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Preface

This research was undertaken in an attempt to bring the worlds of active controls and
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point of view and from a structural point of view at the same time, I could make a little
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my approach to viscoelastic damping will be of use to researchers currently struggling with

structures containing viscoelastic materials.

Although I'd love to take full credit for this work, the truth is it would never have

become a reality without the support of my professional associates, friends, and family.

My original sponsor from the Vibrations Group, Structural Dynamics Branch, Stuctures

Division, Flight Dynamics Directorate, Wright Laboratories, Major Al Janiszewski (now

Lieutenant Colonel), deserves the credit for planting the seed which grew into my research

topic. To his successor, Major Steve Whitehouse, I am grateful not only for his sponsorship,

but also for his patience and understanding when things took a little longer than originally

planned.

My committee members have also been very patient, and I thank them for sticking

it out. I am especially grateful to Dr Liebst and Major Warhola for the many hours I

spent in their offices. There is not enough room to express my appreciation and gratitude

to my advisor, Colonel Bagley. From the moment he first suggested I consider pursuing a

doctorate, he has been my staunchest supporter. He had faith in me and my abilities at

times when I was about to give up hope. My husband Pierre has also been a wonderful

supporter. He has done more than his share in taking care of the house and girls.

This dissertation is dedicated to my daughters, Marie and Liana, both of whom were

born during its development. They have given my life a whole new meaning and purpose.

Michele Lynn Devereaux Gaudreault
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Abstract

A modified form of the standard linear quadratic regulator (LQR) cost functional is

used to optimally blend active vibration control and passive structural damping, whether

viscous or viscoelastic. Viscoelastic damping is first modelled by a standard linear model,

and then by a fractional derivative model. For the viscous damping case and the classically

modelled viscoelastic damping case, a sub-optimal closed form solution is derived that is

independent of the initial conditions. An iterative technique that minimizes the average

value of the cost functional and one that minimizes the maximum value are developed.

Both techniques are applicable to viscous and viscoelastic damping and are independent

of the initial state. The advantages and disadvantages of the different solution techniques

are given with respect to computation requirements and performance. Several numerical

examples illustrate the similarities of and differences between the various techniques.

xiii



SIMULTANEOUS DESIGN OF ACTIVE

VIBRATION CONTROL AND

PASSIVE DAMPING

I. Introduction

The need for simultaneous optimization of damping and active vibration control is

driven primarily by the potential use of large flexible structures in space. Simultane-

ous design of active vibration control and passive damping increases the effectiveness and

efficiency of vibration suppression systems for these structures. In many methods of vi-

bration suppression, the structure is made as rigid as possible, the residual damping is

approximated as viscous, and then an optimal controller is designed with respect to a pre-

determined cost function. Although the controller effectively damps vibrations at specific

frequencies, the controller may excite one mode while trying to damp out another. To

stabilize the associated modes, passive dampers are added. But this changes the whole

system - how "optimum" is the controller now? Is control effort still optimized? What

is the "best" size for the passive dampers? The efficiency as well as the effectiveness of

the resulting vibration system is suspect. By designing passive and active control ele-

ments simultaneously, the efficiency and effectiveness of the vibration suppression system

is increased.

Thus a need exists for a procedure to simultaneously design active control and struc-

tural damping. The procedure should be applicable to structures with viscous or viscoelas-

tic damping. Mar alluded to this need at the Vibration Damping 1984 Workshop when

he encouraged viewing damping as a creative force in design [22]. Others have placed

a greater emphasis on the interaction between viscoelastic damping and active vibration

control.

One of the efforts in this area was the development of numerical schemes for the

modeling and control of longitudinal vibrations in a rod with Boltzmann-type viscoelastic

damping by Burns and Fabiano [7]. Another effort was Hannsgen and Wheeler's research

on the dynamic behavior of viscoelastic structures which emphasized the interaction be-

tween passive viscoelastic damping and active feedback damping. They determined the
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interacting effects of viscoelastic dissipation and feedback dissipation in the damping of

oscillations in certain viscoelastic rods and beams [15].

Simonian, Major, and Gluck pointed out that incorporating passive damping in an
active control design must be done so that the deficiencies of one technology are compen-

sated by the strengths of the other [29]. They proposed an iterative scheme that uses

modal strain energy analysis to determine the modal damping. A hybrid cost function was

used to determine the tradeoffs. Fowler et al. implemented a variation of this method in a

computer program [14].

Smith, et al. looked at redesigning a structure to make it easier to control. They
assumed an ideal controller had been designed, and adjusted the mass, damping stiffness,

and control to give the same performance with less effort [30].

Onoda and Watanbe used a direct numerical optimization approach, which accounted
for the uncontrolled residual modes, for the design of an optimal controller composed of
a regulator and an observer. The approach was incorporated into a structure/controller

simultaneous optimization scheme [28]. Onoda and Watanbe demonstrated their technique

for a beam, and optimized the structure by changing its cross-sectional area.

This dissertation takes a different approach, attempting a dosed form solution to
the problem of how to achieve an optimal blending of active control feedback gains and

passive structural damping parameters (e.g., dashpot constants, thickness of viscoelastic

pad, or area of contact of viscoelastic pad). A variety of techniques are derived, some of

which are closed form approximate methods, and some that require iteration to achieve

the optimum.

•lie techniques are developed for structures in which the equations of motion can be

expressed in terms of finite elements. In addition, the damping matrix in the equations of

motion must be symmetric and be able to be expressed as a product of three matrices, the

middle one being a diagonal matrix of the damping parameters.

Chapter II contains the fundamental development of the dissertation. Viscous damp-
ing is assumed; Chapters III and IV will extend the development to structures with vis-

coelastic damping. Two performance indices, each a modification of the standard linear

quadratic regulator (LQR) cost functional, are used. In the first one, the damping force
enters the cost functional in the same form as the control force. This cost functional leads
to a closed form, approximate, solution for the damping parameters and active control

2



feedback gains. Next, an iterative technique for determining the optimal blend of damp-

ing parameters and active control feedback gains that minimize the the average value of

the cost functional over a representative sample of initial conditions is derived. An iter-

ative technique that minimizes the maximum value of the cost functional is also derived.

Examples are included to illustrate and compare the techniques.

In the second performance index, damping is treated as a one-time cost. Thus the

damping parameters appear explicitly in the cost functional. Although a closed form

solution is not obtained, two iterative techniques similar to those derived for the first

modification of the cost functional are presented. An example is given to illustrate these

techniques.

In Chapter III, the development of Chapter II for the first performance index is

extended to the case of viscoelastic damping. Viscoelasticity is modelled using a classical

approach in which the relationship between stress and stain is expressed in terms of integer

order derivatives on stress and strain. As in Chapter II, a dosed form, approximate,

solution for the damping parameters and active control feedback gains is derived. The

derivation holds for any (finite) number of derivatives on stress and strain. For the case

in which only first derivatives on stress and strain are used in the model, techniques that

minimize the maximum value of the cost functional and the average value of the cost

functional over a representative sample of the initial conditions are derived. Examples

similar to the ones in Chapter II are presented.

In Chapter IV, the development of Chapter II for the first performance index is

also extended to the case of viscoelastic damping, but in this chapter viscoelasticity is

modelled using fractional order derivatives on stress and strain. Although a closed form

solution is not obtained in this ca, -,, two iterative solutions analogous to those in Chapter II

are derived. One minimizes the maximum value of the cost functional, and the other

minimizes the average value of the cost fvnctional over a representative sample of the

initital conditions. Examples similar to the ones in Chapters II and III are presented.

A variety of solution techniques for determining the optimum blending of active

vibration control and passive structural damping is offered to the design engineer in this

dissertation. The closed form solutions give him quick, adequate results, and provide

good starting points for the iterative techniques. Minimizir,- the average value of the

performance index tends to give better per Si. .ianive ot the two iterative techniques.
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IH. Fundamental Development

2.1 Preliminaries

In addition to developing techniques for simultaneously designing active vibration

control and passive viscous damping, this chapter lays the groundwork for the following two

chapters. These three chapters rely heavily on a modified version of the linear quadratic

regulator (LQR) performance index, which is commonly used in control theory [1]. In

this section, a short review of the linear quadratic regulator is given. The next section

applies the development of the linear quadratic regulator to the problem of simultaneous

optimization of passive viscous damping and active control.

In this thesis, all problems considered are in finite element formulation. The equations

of motion of a structure modelled using finite elements is

Mi(t) + DM(t) + Kx(t) + buu(t) = 0 (1)

where x is the position vector, M is the mass matrix, D is the damping matrix, K is the

stiffness matrix, and b. is the matrix coefficient of the vector of control forces, u.

It will be convenient to have the equations of motion in first order form:

{ (t) 0 1 X(tI + [ u(t) (2)
f(t) -M-'K -M- 1D i(t) -M-b ]

By dropping the notation for dependence on time t for brevity, and defining a state vector

y composed of the position and velocity vectors, x and i

{ x(t) (3)
k(t)J

Eq (2) can be written more compactly

k = Ay+ Bu (4)

where A is the plant matrix and B is the input matrix. The initial conditions at time to

are assumed known:

y(to) = Yo (5)
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Since the goal of this thesis is vibration suppression, the final condition at a specified time

t! is zero:

y(tj) = 0 (6)

The LQR performance index depends on the state y and on the control u:

(YT=qy + UTRu)dt (7)

The state weighting matrix Q is symmetric and positive semi-definite, while the control

weighting matrix R is symmetric and positive definite. The relative magnitude of the

diagonal elements of the weighting matrices Q and R reflect the relative importance of the

state y and the control u. The optimal control is that which minimizes the performance

index, Eq (7), subject to the state equations, Eq (4).

Using the method of Lagrange multipliers, the state equations, Eq (4), can be ap-

pended to the performance index [12:263]:

J t [l(yTQy+ TRu) -T( -Ay-Bu)] dt

To minimize the performance index, it is necet 3ary to compute the variation of the

performance index due to variations in the state and the control.

6J = j' 1 (YTQb + uTRbu) - 6AT(kr - Ay-Bu) - AT(6$r - Aby - Bbu)] dt

The independence of the three unknowns y, u, and X leads to three equations:

k = Ay + Bu (8)

u = -R-lBT\ (9)

0 = i + AT, + Qy (10)

Assuming the Lagrange multiplier A is linearly dependent upon the state y

X= Py
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Eqs (9) and (10) can be written as

u = -R-lBTpy (11)

0 = Py + Pj + ATpy + Qy (12)

Substituting Eq (11) into Eq (8), and then Eq (8) into Eq (12), one obtains

[P + PA - PBR-IBTP + ATp + Q]y = 0

This equation holds true for general y only if the expression within the brackets is zero,

which in turn implies that P satisfies the matrix equation

P = -PA + PBR-'BTP - ATP - Q (13)

One of the basic characteristics of the regulator is that the final time t1 is very far

in the future. So the steady state solution of Eq (13), i.e., P = 0, is of interest - which

implies P satisfies the algebraic Riccati equation

PA - PBR-..BTp + ATp + Q =0 (14)

Since the algebraic Riccati equation is symmetric (i.e., taking the transpose of Eq (14)

results in the same equation), its solution P is symmetric (P = pT). Another characteristic

of the steady state solution P is its independence of initial conditions. The control u that

minimizes the performance index J is given by Eq (11) where P satisfies Eq (14).

In the next section, viscous damping is considered analogous to active control, and

the problem of optimizing damping and control simultaneously is addressed.

2.2 Simultaneous Optimization of Viscous Damping and Active Control

To optimize damping and control simultaneously, consider a modification of the LQR

cost functional to include passive damping forces. The passive damping forces are treated

as co-equals to the active control forces, and are weighted in a similar manner. Let v

be a vector of passive damping forces in the system, and S its positive definite weighting

6



matrix. The modified performance index is taken to be

S= j y2 + uTRu + vTSv)dt (15)

There are specific reasons for weighting the passive damping forces like the active

control forces. When implementing a damping design using viscous fluid dampers or vis-

coelastic solids, one must take into account the temperature sensitivity of the damping

medium. Modest changes in temperature due to absorbed mechanical energy can dra-

matically alter the damping properties of both fluids and solids. Hence one is motivated

to limit in some fashion the mechanical energy absorbed by any given damper as well as

limit the peak value of its damping force. The quadratic damping term appearing in the

performance index, Eq (15), serves this end rather nicely. One should note that in the case

where the passive forces v are proportional to the velocity vector, this quadratic damping

term is reminiscent of the Rayleigh dissipation function used in conjunction with energy

methods in classical dynamics [25:89].

To determine the form of v and how it fits into the equation of motion, a closer

look at the equations of motion is needed. In the problems addressed in this chapter, the

damping matrix is symmetric and is of the form

D = bvCb T (16)

where C is a diagonal matrix of the desired viscous damping coefficients. By expressing the

damping matrix D in this form, the damping coefficients have been separated out of the

damping matrix. Since viscous damping coefficients are (usually) constant and positive,

C is positive semi-definite. The matrix b, is a matrix of constants chosen to reflect the

attachment pattern of the viscous dampers. Then the state equations can be written as

{ t) 0 I + xMi) 0 I u(t)
:(t) -M-'K 0 o (t) -M-B J

+ Cb Ti(t) (17)
-M-lbv

The quantity CbVT* represents the passive damping forces.

7



If stiffness is allowed to vary as a design parameter, and the change in stiffness can

be expressed as

AK = bkCkbkT

then the third term on the right hand side of Eq (17) becomes

-M-1bk -M-0b], 0 C 0 bjT j (t)

Hence, the passive structural forces v depend linearly upon the state y according to

v = cIy (18)

where C contains the desired passive damping coefficients (and/or changes in stiffness)

along its diagonal. The matrix 4 is defined as either

0=[0 byT or rIbT =T (19)
0 b,,

depending on whether stiffness is allowed to vary or not. If the number of stiffnesses that

are allowed to vary plus the number of damping coefficients is equal to the length of the

state vector, then 4 can usually be chosen such that it is invertible.

By dc'ng the matrix B, in a similar manner,

B•= or B= = (20)
BV -M-lbv or Bv -M-Ibk -M-Ibv 20

the state equations can be written in a modified, compact form:

j=Ay+ Bu+ Bvv (21)

The optimization problem can now be expressed as the minimization of the perfor-

mance index, Eq (15), subject to the state equations, Eq (21). Two additional constraints

are that the passive forces v are of the form given in Eq (18) and the matrix of damping

coefficients C is a constant, positive semi-definite, diagonal matrix since damping coeffi-

8



cients are non-negative. The method of Lagrange multipliers can be used to append the

first two constraints to the performancc index:

J- [(yQy + uTRu + vTSv)- A( - Ay - Bu - Bvv)- AT(v - C 3 y)] dt

Now the vectors y, u, and v are taken to be independent. So Eq (18) implies that the

matrix C is independent of these vectors also. By definition, X, and A2 are independent of

each other and of y, u, v, and C. Hence, to minimize the performance index J, one takes

its variation with respect to y, u, v, C, X, and A2 and sets the variation equal to zero. The

variation of the performance index J is

't
J = J- [(y TQy + uTIAu + vTSbv) - 6AT(k - Ay-Bu - B- v)

-T(oSr - My - B6u - B.6v) -62(v- C#y)- dt(6v- tC~y- c46y)d

Since initial and final conditions are specified (Eqs (5) and (6)), the term Aý6,j can be

integrated by parts:

I T j~ T
XAT 6dt = ATb6yl'' - Abr•ydt = - b A 1 6ydt

Substituting this result into the variation of the performance index and combining like

terms yields

J =f [(yTQ +.lX + ATA + A'c\)2 Y + (uTR + ATB)bu

+(vTS + ATB, - AT2)bv - 6AT(k" - Ay - Bu - Bvv)

-61T(v - C#y) + AT(Wc)fy] d

The independence of the six unknowns leads to six simultaneous equations

k = Ay + Bu + B~v (22)

v = C~y (23)

u = -R-lBTA\ (24)

0 = • 1 + ATA 1 + Qy + #TCA 2  (25)

A2 = B \TAI + Sv (26)

A2 = 0 (27)

9



From Eqs (26) and (27) the passive force vector v is proportional to the Lagrange multiplier

A,:
v = -S-IB T\I (28)

Substituting Eqs (24), (27), and (28) into Eqs (22) and (25) yields expressions for the time

derivatives of the state vector y and the Lagrange multiplier Aj:

= Ay - BR-lBT -BS-1B,,T\ 1

A1 = -Qy - AT'\

From Eqs (23), (27), and (28) the relation between the parameter matrix C, the state

vector y, and the Lagrange multiplier A1 is

C4y = -S-1B T 1I (29)

Since the matrices C, 4, S, and B, are constant, Eq (29) implies that the Lagrange

multiplier A1 is equal to a constant matrix times the state:

A1 =- Py (30)

where the square matrix P is constant. This is the form of the standard LQR solution.

In fact, Eqs (24) and (30) can be combined to give an expression for the active control u,

which is the same as that derived in the last section:

u = -R-lBTpy (11)

From Eqs (29) and (30) the relation between the damping coefficients, the state, and the

constant matrix P is

C4y = -S-lB Tpy (31)

while Eqs (25) and (30) yield the following relationship between the state y, its time

derivative k', and the matrix P:

0 = Pk + ATpy + Qy (32)

10



Substituting for the time derivative of the state j, in Eq (32) yields the expression

P(Ay + Bu + Bv) + A Tpy + Qy = 0

Using Eqs (11) and (18) to substitute for the active control vector u and the passive force

vector v, one obtains an equation in terms of the matrix P and the state vector y:

PAy + P[B(-R-lBTpy) + Bv(-S-lB TPy)]+ATpy + Qy = 0

This equation can be written in terms of a matrix times the state vector:

[PA + A'P - P(BR-lBT + BVS-'BVT)P + Q]y = 0

For general y, the above equation leads to the algebraic Riccati equation

PA + ATp - P(BR-lBT + BvS-'BVT)P + Q = 0 (33)

After determining the solution P to the above equation, the active control u is determined

from Eq (11). To determine the viscous damping coefficients, one notes from Eq (31) that

for general y,
C$ = -S-'B7p (34)

If $ is invertible, it would seem that C could be determired from Eq (34)

C = -S-lB'Tp -l (35)

where P satisfies the above algebraic Riccati equation, Eq (33). However, in general, C,

as computed from Eq (35), is fully populated, while C must be a positive semi-definite

diagonal matrix as the problem was originally posed. This requirement was not specif-

ically addressed in the above derivation, and is normally not encountered in an LQR

problem. The assumption that the solution has the form of the standard regulator (i.e.

A, = Py) is what led to a non-diagonal C. So the optimal solution derived in this section

(Eqs (11), (33)), and (34)) is not attainable since it led to a fully populated C. In the next

section, approximate solutions to the optimization problem of Eq (15) are proposed.

Unlike the standard LQR problem, the solution to the optimization problem posed

by Eq (15) and C constrained positive semi-definite diagonal is not given by a Riccati
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equation, even when t1 -- oo. The solution to the present problem does, however, require

an iteration involving a Riccati equation similar to Eq (33) and is dependent upon initial

conditions. It is presented briefly in the following section.

2.2.1 Solution Technique for Minimizing the Cost Functional Error. The purpose

of this section is to find good approximate solutions to the problem of optimizing active

control and passive viscous damping simultaneously. Two approaches that are independent

of initial conditions are given.

One approach is to minimize the distance between the optimal solution derived in

the previous section and the set of allowable solutions. The optimal solution is the matrix

product 0t that satisfies

C4 = -S-'BTP (34)

where P is the solution of Eq (33). The set of allowable solutions is the set of matrices

of the form 0t where C is a positive semi-definite diagonal matrix and 4 is defined

by Eq (19). This set is a convex subset of the space of all matrices that have the same

dimensions as CC. The distance will be defined as the Frobenius norm of the difference:

110t + S-' 1Bv PIF (36)

Minimizing this norm is equivalent to a least squares fit. This norm will be minimized

by computing the appropriate viscous damping coefficients, which are the elements of the

diagonal matrix C.

The Frobenius norm of an m x n matrix A is defined as the square root of the sum

of the squares of the elements of the matrix:

IIAIIF = 1/2

[+=1 j=l

Minimizing Eq (36) over the set of positive semi-definite diagonal matrices is a minimization

problem that can be solved in closed form (see Appendix A). If

W = -S- 1BvTP
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the diagonal elements of the diagonal matrix C are

Cii = max (j" ", 0 (37)

If m is the number of damper coefficients, and n is the length of y, 4' and W are m x n

matrices.

The second approach involves examining the minimum performance index (Eq (15))

when the damping coefficients C are set before computing the active control gains rather

than computing them simultaneously. The performance index becomes

J = j'- [yT(Q + ,TCscI)y + uTRul dt (38)

subject to the equations of motion:

k = (A + BC4)y + Bu (39)

With the damping coefficients C fixed in advance, the minimizaton is a standard LQR

problem with modified state weighting matrix Q and modified plant matrix A. The mini-

mum performance index J is achieved by Eq (11):

u = -R-lBTpy (11)

where P (in the limit as tf --. oc) is a solution to the algebraic Riccati equation

P(A + BVC0) + (A + BCI)TP - PBR-lBTp+Q + $TCSC.- =0 (40)

This algebraic Riccati equation expresses the matrix P in terms of the matrix C.

In effect, the active control u is now in terms of the damping coefficients C. The next

step is to determine how to select the damping coefficients C such that the cost functional

(Eq (38)) is minimized.

One approach is to express the value of the performance index as t! -- eo in terms

of P and the initial conditions (see Appendix B):

J = lim J(t) = 1Yo Y (41)

13



Thus, if the initial conditions yo are known, one can iterate with respect to the damping
coefficients (i.e., positive semi-definite, diagonal C), using Eq (40) to determine P during

each iteration, to minimize the performance index J given by Eq (41). However, opti-

mizing for fixed yo may result in poor performance if initial conditions change (due to an
unexpected disturbance, for instance). In contrast, the standard LQR problem does not

require this iteration because the solution to the Riccati equation (Eq (14) is independent

of the initial conditions Yo, and hence results in inherently robust performance with respect
to the initial conditions. To achieve robustness with respect to initial conditions, solutions

independent of Yo will be sought.

It will be helpful to consider the difference between the value of the performance index

at the (unattainable) solution of Section 2.2 and that achieved by enforcing the constraint

that the damping coefficient matrix C must be diagonal. Letting P represent the uncon-
strained optimal solution and P a constrained solution, the change in the performance

index is

AJ = y0Py0 - y0'Py0 = y0'(P - P)y 0 = y0OAPy 0  (42)

In solving for AP, one first recalls that P satisfies Eq (33)

PA + ATP - P(BR-lBT + BVS-lBVT)P + Q =0 (33)

while P satisfies Eq (40):

P(A+ BC) + (A + BvC) T P-PBR-1BTp+Q+ TCSC =0 (43)

Subtracting Eq (33) from Eq (43) leads to an expression for AP

APA + ATAp + APBvC4 + PBC$+(BCG + PBC$)T AP

+ (BVC, + PBVCqI)TP - AP(BR-.BTp) - PBR-IBTP
- AP(BR-lBT)AP + XTCSCf + PBVS-IBTp - 0

which can also be written in the form of an algebraic Riccati equation

AP(A - BR-BTP + BC1) + (A - BRIrBTP+BC4b)TAP

- AP(BR-1 BT)Ap+E =0 (44)
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where

E = *TCSCp + *TCBvTP + PBvCl + PBVS-IBVTp (45)

This Riccati equation determines AP, which in turn determines AJ. Standard Ric-

cati solvers find the real, symmetric solution to the algebraic Riccati equation that stabilizes

the plant matrix. Now the plant matrix (A - BR-IBTp + BVC$) is stable. Therefore,

if E = 0, then AP = 0 is the only real symmetric solution to Eq (44) [36]. So, driving E

as small ae possible yields a small AP and thus drives P to P. This is highly desirable

because the unconstrained standard LQR solution P is highly robust with respect to initial

conditons.

So this approach to an approximate solution is based on finding those damping

coefficients that make the matrix E as close to the zero matrix as possible. Based on

Eq (45), E can be written as

E = ITC(SCb + BVTP) + PBMS-(SCI + BVTp)

= (eTC + PBS-')(SC-f + BVTP)

= (eTCS + PB,)S-'(SC0 + BVTP)

= [S-'/ 2 (SCI + B Tp)]T[S-lI2(SC, + BVTp)]

= HTH (46)

where

H = S-1/ 2 (SCA + BVTp)

So choosing the damping coefficients such that the diagonal matrix C makes the matrix

product SC4o as close to the matrix product (-B TP) as one can will make E small.

Since IIHTHII 2 = IIHII2, choosing the damping coefficients that minimizes the two-norm of

H minimizes the two-norm of E and drives AJ small. This minimization can be accom-

plished using the MATLAB routine FMINS, which uses the Nelder-Mead simplex search

algorithm [231.

It is interesting to note how similar the matrix H is to the error term in Eq (36).

In fact, minimizing the Frobenius norm of Eq (36) gives the same result as minimizing

IIHIIF. Because IIHTHIIF < IIHII., choosing the damping coefficients that minimize the

Frobeniuo norm of H will minimize an upper bound on the Frobenius norm of E and thus

drive AJ --+ 0. The advantages of the Frobenius minimization over minimizing IIH112 are
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that it is guaranteed to return positive damping coefficients and it can be solved in closed

form (see Appendix A). As will be shown later, the latter advantage makes the Frobenius

minimization computationally more efficient.

In this section, two methods of obtaining an approximate solution to the optimization

problem posed in Section 2.2 have been derived. One is a minimum singular value method

(minimize J1H112), and the other is a Frobenius norm minimization (minimize IIHIIF). How-

ever, these are approzimate solutions. It is desirable to achieve an actual optimization. In

the next two subsections, the performance index is redefined in two different ways, and the

minimums of the resulting cost functionals sought.

2.2.2 Solution Technique for Minimizing the Mean Performance lex. In each

of the next two subsections, a cost functional is defined based on the form of the perfor-

mance index given in Eq (41). The cost functional of the next section is the maximum

value of the performance index. In this subsection, a cost functional is the average of the

performance index over the initial conditions. Since the magnitude of the initial condi-

tions is irrelevant to the value of viscous damping coefficients C and the corresponding

solution to the modified Riccati equation, Eq (40), initial conditions used in the next two

subsections are those whose magnitude is unity, in other words, the unit ball Ily11oll = 1.

Minimizing the average value of the performance index, denoted by 7, over the unit

ball Ilyoll = 1 does have the potential to lead to large values of the performance index for

some initial conditions, but the large values will be offset by low values of the performance

index at other initial conditions. Since the damping coefficients and active control gains

that are calculated will give the lowest average value of the performance index, one would

expect that this solution will give better performance over more than half of the initial

condition compared to any other combination of damping coefficients and active control

gains.

The average value of the perfarmance index will be calculated by integrating the

performance index over the surface of the unit ball, then dividing by the surface area of

the unit ball. First the performance index will be expressed in terms of the elements of

the initial state vector and the solution to the Riccati equation. Let y0 = [Y1 Y2 ... Yn]T.

Since P is symmetric, the performance index is

1ijYiYj ii i (47)
= j=1 s=1 a j=s+1
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The expression for the average value of the performance index is

f 2iff1yo= (+ Pijyiyj) dA

f~yoU=1 dA

Since the sums are finite, the integrals and summations can be interchanged:

S(fl.,,, + (f. , dA)

_ = I i-1 j=y+1 1 (48)
fjjyo•=j dA

To simplify the evaluation of the integrals in Eq (48), Gauss' divergence theorem is used

to express the surface integals as volume integrals [19:355]:

Jn.udA= IdivudV (49)

Let ek represent the unit vector in the direction of the kth coordinate. Then the unit vector

normal to the surface of the unit ball is n = r=, ykek. The vector u must be determined

for each of the three integrals in Eq (48). (Please note that in this discussion, u is some

continuous vector function, not the active control vector.) If u . u is taken to be %2', one

can infer that u = - ukek = yiej. Therefore the divergence of the vector u is unity:

div u = 8 - i 1 (50)
k----1 Yk ON =

So evaluation of the first integral in the numerator in Eq (48) is the volume of the unit

ball:

Jol 2 dA J dV = V (51)

In the second integral in the numerator of Eq (48), n . u is taken to be ypyj. It follows

that u = 1(yjej + yje,). Then the divergence of u is zero:

div u = -- + 0 (52)
09Ok 8Yi + OYj
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Hence the second integral in the numerator of Eq (48) integrates to zero:

1y01=1 dA = 0 (53)

The integral in the denominator of Eq (48) is just the surface area of the unit ball, but it

can be expressed in terms of the volume. In the integral, the quantity n- u is unity:

n'u= 1

It is sufficient that u = n. Thus the divergence of u is equal to the number of terms in the

state vector:

divu=r -- = • = n (54)
k=--1 ay ----I

Thus the surface area of the unit ball is n times the volume:

S dA=jI ndV =nV (55)

Combining Eqs (48), (51), (53), and (55),

~1

i= j,1_V

7 V nV pi(56)
1=

-trace P (57)
2n

Hence, choosing the viscous parameters C that minimize the trace of the matrix P mini-

mizes the average value of the performance index J over the unit ball Ilyoll = 1, regardless

of system order.

This subsection has derived a technique for minimizing the average value of the cost

functional over a representative sample of initial conditions. The next subsection will

present another technique for optimizing viscous damping and active control simultane-

ously.

2.2.3 Solution for Minimizing the Maximum Performance Index. Another ap-

proach to optimizing viscous damping and active control simultaneously is to minimize

the maximum value of the performance index J over the unit ball U1yoII = 1. One way to
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accomplish this is to minimize the two-norm of P, since the performance index is less than

or equal to the two-norm of P:

J< = 1IyII 2IiPii2 = 211PI12 (58)

22
The quantity on the right hand side of the above equation will be referred to as Jmo•:

In this method, iteration with respect to the viscous parameters C is carried out until

i1P112 is minimized where P satisfies Eq (40). This approach might be very conservative in

general, since the initial conditions Yo that maximize the performance index may not be

encountered very often.

The last three subsections have produced four solution techniques that are indepen-

dent of initial conditions. In summary, the four solution methods are

1. min IIHIIF: Closed form solution based on finding a diagonal C that minimizes the

error in the performance index with respect to the Frobenius norm. See Eqs (40)-(46).

2. min IIHI12: Iterative solution technique based on finding a diagonal C that minimizes

the error in the performance index with respect to the two-norm. See Eqs (40)-(46).

3. Mrin IIP12: Iterative solution technique based on finding a diagonal C that minimizes

the maximum value of the performance index. See Eqs (40) and (58).

4. min (trace P): Iterative solution technique based on finding a diagonal C that min-

imizes the average value of the performance index. See Eqs (44) and (47)-(57).

The minimization of IHIIFr and the minimization of IIH112 do not guarantee a positive

solution for the damping parameters. The same applies to minimizing trace(P) and lP 112.

However, as will be seen later, positive damping parameters are obtained in all the example

problems. Following are example problems which illustrate the above techniques. The

example problems are also used to compare the different solution techniques.

2.2.4 Example Problems.

2.2.4.1 Example #1 - Single DOF System. In this example problem,

single degree of freedom spring-mass-damper system, illustrated in Figure 1, is used to
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Figure 1. Simple Spring-Mass-Damper System

demonstrate and compare the four solution techniques derived in this section. The equation

of motion is given by the scalar equation

i + ci + (0.5 + Ak)z = -u (59)

where Ak and c are the passive design parameters, representing change in stiffness and

viscous damping respectively. Letting yP = z, y2 = i, then_. I 0 +1,+ 0 1 + _0 _O Ak 0 [1 0 1
-05 0 -1 -1 -1 0 c 0 1

= Ay + Bu + BCby

The weighting matrices are chosen to give equal weighting on position, active control, and

viscous damping:

Q= 1 ], R=-, S= 1 (60)
0 0 0 1

The weight on the change in stiffness, Ak, is chosen large to assure negligible change in

stiffness (Ak ; 0). This isolates damping as the design parameter of interest.
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Figure 2. Performance Index vs. Initial Conditions

The optimal unconstrained solution of Section 2.2 (i.e., the solution of Eq (35)) for

this problem yields a non-diagonal parameter matrix:

0.000 0.000 1I =(61)

.500 .707 ]

For the single degree of freedom case, Ilyoll = 1 can be represented by a single

parameter 0 where yo = [cos 0 sin 01T. The value of the performance index for the optimal

unconstrained parameter matrix is shown as a solid line with circles in Figure 2. Also

included for comparison is the result for purely active vibration control (i.e., C=0).

Table 1 summarizes various results for the single degree of freedom system. For this

example, the results for the alternative suboptimal solutions, the min IIHI12 and min IIHIF
cases, are the same to two decimal places, but in general the results will be different.

Although the damping coefficients for the min 1IH1 2 and min 11BHpF cases are nearly twice

those for for the min IIPIi 2 and min (trace P) cases, they nonetheless serve as reasonable
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Table 1. Damping Parameters and Feedback Matrices for Example # 1
c feedback matrix

min IIP1 2  .395 [11.6679 4.4679]
miin trace P .455 [13.4997 4.7807]
min IIHIIF .707 [21.2052 5.8816]
min IIH112  .707 [21.2052 5.8816]

first guesses for these solution techniques. The importance of this in higher order systems

will become evident in Example #3.

For the single degree of freedom problem, minimizing IIP112 resulted in a diagonal C:S0.000 0 1 62[ =3b (62)
0 .39%

The result is plotted in Figure 2. The graph shows this solution to be more robust

than the purely active solution. r'or at least one initial condition, any other value of

damping coefficient (or change ii. stiffness) will produce a larger value of the performance

index than the maximum of this solution.

Minimizing the trace of P for Example #1 gave the following diagonal parameter

matrix:

C 0.000 (63)
0 .455

These results are also shown in Figure 2. Although this graph does have points above the

one for min 11P112, the average value of the performance index is lower for this solution

than for any other. The min IIH112 and the min IIHIIF solutions are equal to two decimal

places, so only the mrin IIHIIF solution is shown on Figure 2.

In this example, the different solution techniques were compared using the original

performance index (Eq (15)). In the following example, three solution techniques, mrin

IIHBII, min 11P112, and min (trace P) are compared using the modified performance indices

introduced in Section 2.2.2.

2.2.-4.2 Example #2 - Single DOF System with No Additional Stiffness. In

the example just presented, the change in stiffness (Ak) was made small by choosing the

corresponding weight large. The following example constrains the change in stiffness to be
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zero from the outset (Ak 0- 0). The scalar equation of motion is

: + ci + 0.5z = -u

which leads to a first order system in which the parameter matrix is a scalar and the matrix

4is nonsquare:

~ 0 ±{0}+{ }[ iJ
5 , =1 y + 1 j c 0 1 I Y

-0.50 -y+ 1 0-1U

-Ay + Bu + Bvc~y (64)

Before giving the weightings on the state, control, and passive damping, a short

discussion on how to choose the weightings is appropriate. The weightings determine the

relative importance of driving the state to zero, the expenditure of control energy, and

the absorption of damping energy [26:782]. In the the previous example, no weighting was

placed on velocity, implying that driving velocity to zero was not important. Choosing the

weightings on the state, control, and passive damping is "more of an art than a science"

[18:219]. In this example, the weighting matrices are chosen to minimize energy. Hence,

velocity is weighted more heavily than position since the magnitude of the mass is greater

than the magnitude of the stiffness. Active control and passive damping are weighted

equally, and less than position:

Q, , S-=.1 (65)
0 1

In practice, the design engineer may have to experiment with different weightings

to get a design that is appropriate to his needs. For example, if the weightings on active

control and passive damping are too large, the damping ratios may be unacceptably low. If

the weightings on active control and passive damping are too small, the amount of control

and damping material required may be unacceptably high. For a more detailed discussion

of the choice of weighting matrices, see Reference [2].
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Table 2. Active Control Feedback Gains for SDOF System

c feedback matrices
2.52 [1.72 2.61]
0.89 [1.72 3.00]
0.47 [1.72 3.27]

Table 3. Comparison of Solutions for SDOF System

c 2.52 0.89 0.47
trace P 1.31 1.15 1.16
I1P! 2  I 1.09 0.90 1 0.89

In this case, the optimal unconstrained solution of Section 2.2 (i.e., the solution of

Eq (34)) for this problem yields a 1 x 2 matrix:

o= [ 1.35 2.52]

The Frobenius norm solution yields c = 2.52, while minimizing trace P gives c = 0.89, and

minimizing IIPI12 gives c = 0.47. The active control feedback gains are given in Table 2.

The disparity of the values for the damping parameter c indicate that there is some

insensitivity to the magnitude of the damping parameter c. This is supported by the

fact that there is little difference in trace P and 11P11 2 for the three solution techniques

(Table 3). Figure 3 shows that there is little change in 11P1 2 due to the value of c between

c = 0 and c = 1. The graph of the trace of P is varies by less than 0.05 between c = 0.5

and c = 1.5.

2.2.4.3 Example #3 - Fourteen DOF System. In this example, a more

realistic and more complex structure is considered, the plane aluminum truss in Figure 4.

The finite element model equations of motion can be written in the state space form:

, = Ay + Bu + BC4y (66)

Since the fourteen physical degrees of freedom lead to twenty-eight mathematical degrees

of freedom in a dynamical system, the dimension of state vector y is 28x 1. There are four

control actuators and five dashpots on the truss, so the dimension of the active control

vector u is 4x1 and the dimension of the damping parameter matrix C is 5x5. The

dimensions of the remaining matrices are given as follows: plant matrix A, 28x28; active
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Figure 3. Example Problem #2 - Trace P and IlPl12 vs. C

control input matrix B, 28x4; passive force input matrix B,, 28x5; and 4<, 5x28. With E

representing the elastic modulus of aluminum, A the cross sectional area of the aluminum

elements, and p the density of the aluminum, the parameters of the system are

EA = 1.5179 X10 6 N (3.4125 x10 5 lb)

pA = 8.3564 N-s 2/m 2  (1.212 xl0-3 lb-s2/in 2)

The length of the horizontal elements is 4.572 m (15 ft) while the vertical elements

are 3.048 m (10 ft). The length of the two elements with dampers c4 and c5

is 4.819 m (15.81 ft). Thus, the diagonal elements with dampers cl, C2, and c3

are 5.495 m (18.03 ft) in length. In addition to the consistent mass matrix due to con-

sideration of the mass of the aluminum elements, there are 0.454 kg (1 Ibm) point masses

at every node, with an 0.907 kg (2 Ibm) point mass at the tip. The undamped natural

frequencies range from 7.7 rad/sec to 319.3 rad/sec (1.2 hz to 50.8 hz).

The state weighting matrix Q is chosen such that yTQy equals the total mechanical

energy in the system. Thus Q is formed using the mass and stiffness matrices, M and K.
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Figure 4. Example Problem #3 Truss Structure

The active control weighting matrix is chosen such that its diagonal elements are smaller

than the smallest diagonal value of Q.

In the previous two examples, the weighting on active control and passive damping

were equal. In Example #1, it was shown that using simultaneously designed active

feedback control and passive damping gave better performance than using active control

alone. In general, one would expect that passive damping is cheaper than active control

- it doesn't need an actuator or power for the actuator. Hence for this example, it is

assumed that active control is more costly than passive damping, so the passive damping

weighting matrix S is chosen to be 10-3 times identity, and the active control weighting

matrix R is chosen to be 10-' times identity:

[ 0 .R= 10-2I, S = 10-31 (67)
0 M 1

Using the weightings given above gives the resulting damping parameters for the

different solution techniques in Table 4. At the bottom of Table 4 are the approximate

computation times on a VAX 6420. The solution techniques can be run with simple MAT-

LAB routines. The Frobenius norm minimization uses the algorithm given in Appendix A,

while the other minimizations utilized the MATLAB routine FMINS, using default toler-

ances in the minimization routines. The minimization algorithm used in FMINS is the

Nelder-Mead simplex search algorithm [23].
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Table 4. Damping Parameters and CPU Times for 14 DOF Truss
Min m IiHi rain m H12  mrin 0 IHI12

Cl 60.0169 59.6515 59.6514
dashpot c2  41.7915 46.2314 46.2314

constants c3  41.9507 14.7370 14.7372
C4 57.8418 59.2816 59.2816
cF_ 55.2145 45.9636 45.9636

computation time 17 s 34 s 61 s
min trace P min 0 trace P min IIPI12  min0 IIPi12

Cl 54.3826 54.3826 76.1842 76.1839
dashpot c2  35.4502 35.4503 17.5549 17.5542

constants c3  38.4443 38.4443 28.5870 28.5873
C4 42.1846 42.1846 34.2785 34.2786
c5 46.8419 46.8420 45.5261 45.5255

computation time 22 min 52 min 38 min 1 78 min

The zero subscript on the minimization operator (e.g., min0) indicates that an initial

guess of C = 0 was used. The other cases used the damping coefficients of the min IIHIIF
solution as the initial guess. Using the mrin IHHF solution as an initial guess significantly

decreased the computation time, by more than one half in some cases. The active gain

feedback matrices are given in Appendix F. The results in Table 4 clearly demonstrate

that if one chooses not to spend the additional computer time to optimize the dampers

that the inexpensive mmin IIHIF solution is a reasonably close estimate. For very large

systems this solution may be the only affordable alternative.

In fact, as shown in Table 5, the mrin IIH11F solution gave almost identical closed

loop damping ratios and natural frequencies as the min (trace P) and mmin IIP12 solutions

for this example. Also shown in Table 5 are the open loop poles of the system (no active

or passive control). The average change in frequency due to adding viscous damping and

active feedback damping was about 3 rad/sec.

Since it is not possible to show a two-dimensional plot of J over the unit ball as

in Example 1, another method of comparing the solutions is needed. It would be useful

to have a way to compare the solutions with respect to the original performance index,

Eq (15), regardless of system order. To compare the solution given in Table 4, recall from

Eq (42) that the difference in J between two different solutions can be given by

AJ = yT(P 1 - P2 )yO (68)
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Table 5. Damping Ratios and Natural Frequencies for 14 DOF Truss

undamped mrin IHIH- min trace P mrin IPI12
frequency Wn Wn Wn
(rad/s) (rad/s) (rad/s) (rad/s)

319.3471 0.1249 315.7222 0.1077 316.8960 0.0712 316.9671
290.2645 0.0790 281.1909 0.0763 283.5066 0°0534 288.0130
281.1347 0.0728 279.7743 0.0620 279.4916 0.0729 275.2599
271.9703 0.0417 265.4633 0.0406 267.0294 0.0377 267.9009
264.1012 0.0282 258.9797 0.0297 260.8798 0.0327 262.1410
236.3806 0.1376 245.6173 0.0965 243.8296 0.0857 243.0665
223.1620 0.0853 224.8248 0.0728 224.4934 0.0693 224.1446
165.0056 0.1353 167.7850 0.1166 167.0317 0.1008 166.6382
150.4895 0.1090 153.7449 0.0862 152.4666 0.0811 152.1203
86.1426 0.0884 86.4941 0.0792 86.4090 0.0682 86.2700
64.8809 0.1016 65.2589 0.0952 65.1966 0.0962 65.1802
54.9372 0.0341 55.0353 0.0331 55.0221 0.0337 55.0725
31.9937 0.1096 32.2309 0.1087 32.2221 0.1103 32.2677
7.7196 0.0986 7.7581 0.0986 7.7580 0.0986 7.7582

where PI and P 2 are two different solutions. If the matrix (PI - P 2) is positive definite,

then AJ > 0 for all yo. Hence, P 2 would give a lower value of J than P1 for all Yo. As

shown in Table 6, the mi IIHIIF solution (PF), the min (trace P) solution (Pi,), and

the min 1P112 solution (P 2) give lower values of J for all yo than the solution using only

active damping (PcO); hence, for this example, they are all better solutions than using only

active control. Table 6 also shows that Pt, gives a lower value of J than P2 in fourteen

directions, and a higher value of J in six directions. Since most of the positive eigenvalues

of (P 2 - Pt,) are greater in magnitude than the negative eigenvalues, it is argued that Pt,

is a better overall solution than P 2. This is consistent with the derivation of the min (trace

P) and mrin iiPi 2 solutions since min (trace P) minimizes the average of the performance

index whereas min 1P112 only minimizes the performance index for the worst case. So one

would expect that the min trace P solution would be a better solution for the majority of

initial state vector directions.

Another method of comparing the solutions is comparing the relative differences be-

tween the solutions and the optimal, unconstrained solution (Eqs (11), (33)), and (34)).

Table 7 gives the relative differences between the performance index attained with the op-

timal, unconstrained solution and the performance indices attained with the three solution

techniques. All three solution techniques resulted in increases in the performance index
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Table 6. Eigenvalues of Delta P for 14 DOF Truss

PcO-PF Pc -Pt, Pco-P2 P 2 -PI, PF-P-T Pr-P 2

50062.43 50235.92 50178.14 592.16 778.51 1092.02
31627.88 31654.71 31349.79 468.76 171.34 -501.75
24620.13 24776.08 24465.41 -324.75 111.50 -608.94
11273.39 11227.77 10975.97 215.36 -157.09 -268.53
9964.37 10089.19 9818.28 185.94 -116.79 -237.21
9061.48 9043.97 8936.96 138.59 -69.31 -177.37
7178.83 7266.41 7214.76 122.97 31.17 -168.83
6473.13 6536.19 6495.66 -39.70 -48.81 -108.45
6114.26 6326.30 6265.98 87.88 -43.49 65.78
1879.97 1833.14 1707.37 79.01 -31.22 -79.37
751.17 661.39 683.74 52.84 -16.95 23.78
449.52 416.79 371.62 25.30 -5.84 -24.24
60.82 54.98 60.69 -5.85 2.45 -0.30

1.81 1.60 1.53 0.07 -0.21 0.17
0.61 0.61 0.61 -0.03 -0.06 -0.07
0.40 0.39 0.35 -0.03 0.01 -0.03
0.35 0.35 0.39 0.03 -0.01 -0.02
0.03 0.03 0.02 0.01 0.01 0.01
0.06 0.28 0.28 -0.01 -0.01 0.01
0.07 0.05 0.23 0.01 -0.01 -0.01
0.28 0.24 0.22 0.00 0.00 -0.01
0.10 0.23 0.20 0.00 0.00 0.00
0.16 0.08 0.06 0.00 0.00 0.00
0.21 0.09 0.11 0.00 0.00 -0.01
0.14 0.20 0.13 0.00 0.00 0.00
0.24 0.12 0.08 0.00 0.00 0.00
0.24 0.16 0.16 0.00 0.00 0.00
0.12 0.14 0.08 0.00 0.00 0.00

29



Table 7. Example #3 Relative Increase in Performance Index

IlHili I trace(P) I IIP112

S0.1276 0.1120 0.1534

Table 8. Relative Changes in Eigenvalues

_we I[HIIr trace(P) IlP112
0.1169 7.7733 0.0185 0.0185 0.0185
0.1490 32.3715 0.0398 0.0408 0.0391
0.0714 55.0899 0.0373 0.0383 0.0377
0.1486 65.5923 0.0476 0.0539 0.0530
0.1415 87.0082 0.0537 0.0629 0.0739
0.1097 151.5400 0.0146 0.0244 0.0290
0.1237 166.3686 0.0145 0.0082 0.0232
0.0791 224.1759 0.0069 0.0065 0.0098
0.0841 238.6824 0.0619 0.0250 0.0184
0.0396 263.7692 0.0214 0.0147 0.0092
0.0595 271.9458 0.0296 0.0260 0.0262
0.0640 282.0354 0.0118 0.0093 0.0256
0.0826 290.0382 0.0307 0.0234 0.0300
0.0936 320.6543 0.0348 0.0183 0.0251

of less than 20%; minimizing the trace of the solution to the algebraic Riccati equation

resulted in the lowest increase, 11%.

Table 8 gives a measure of how close the attainable system is to the optimum system

produced by the optimal, unconstrained solution. It does this by computing the eigenvalues

according to the formula
IAj(A)- pt)IA,(Aop,)l

The damping ratio and natural frequency listed in the table are those associated with the

optimum system. Minimizing the trace of P is closer to the optimum solution than the

other two solution techniques at higher frequencies. At lower frequencies, it is not clear

whether the Frobenius norm solution or the minimum two-norm solution is closer to the

optimum solution; both are closer than the minimum trace solution. Table 9 lists the

changes in eigenvalues in increasing order. Looking at this table, it is clear that the largest

eigenvalue change is 7% and occurs in the minimum two-norm solution. Tables 7-9 indicate

that the solution techniques are good approximations to the the optimal, unconstrained

solution.
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Table 9. Example #3 Relative Changes in Eigenvalues in Increasing Order

IIHIiF trace(P) IIPI12
0.0069 0.0065 0.0092
0.0118 0.0082 0.0098
0.0145 0.0093 0.0184
0.0146 0.0147 0.0185
0.0185 0.0183 0.0232
0.0214 0.0185 0.0251
0.0296 0.0234 0.0256
0.0307 0.0244 0.0262
0.0348 0.0250 0.0290
0.0373 0.0260 0.0300
0.0398 0.0383 0.0377
0.0476 0.0408 0.0391
0.0537 0.0539 0.0530
0.0619 0.0629 0.0739

In this example, the different solution techniques were demonstrated for a fourteen

degree of freedom truss. A method of comparing the different solutions was developed

that is independent of system order and initial conditions. Before proceeding to the case

in which the damping is provided by viscoelastic materials, an alternate form of the cost

functional will be touched on in the next section.

2.3 Alternate Form of The Performance Index

The cost functional of Eq (15) treats the passive damping forces as if they were

similar to the active damping forces, as do the following chapters on viscoelastic damping.

This section takes a short side trip to address the argument that passive damping is an

initial one-time cost item and ought to be weighted as such. Hence, the weighting on

damping is accomplished by weighting the damping constants directly:

J= cTSc + 1 (yTqy + uTRu) dt (69)

The equations of motion are of the same form as Eq (39):

S=(A + BCA)y + Bu (39)

The vector c in Eq (69) is a vector of the passive damping parameters and the matrix C

again is a diagonal matrix of the damping parameters (i.e., the elements of c). Regardless
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of the values of the damping parameters, the minimum of the integral term is given by
2Y0PY0 where the matrix P satisfies

P(A + BVC4) + (A + BVCO )TP - PBR-'BTp + Q =0 (70)

Hence the performance index can be written as the sum of two terms:

j = (yopy0 + cTsc) (71)
2

To obtain solutions independent of initial conditions, the same approach used in

Section 2.2.2 will be used here. Since

J = IyoPY0 + CTSCI < 1(IIYoII2IIPIV2 + cTSc) = -(11P[1 2 + cTSc)2 2 2

the maximum value of the performance index is minimized for flyoll = 1 by minimizing

Jm. -(IIP(I 2 + CTsc) (72)

where P is found by solving Eq (70). This is done by iterating with respect to the viscous

damping parameters c in the same manner as in Section 2.2.2.

To minimize the average value of the performance index minimize

-fUY. 0 =1 yTpy 0 dA - f T0~.1 JSc dA
d a0 + 2f 1 =1 1 A (73)fA l)'ol= l dA fly.,,l=, dA

= -trace P + 1 cTSc (74)
2n 2

where P is again given by Eq (70). Here also, one needs to iterate with respect to the

viscous damping parameters c in the same manner as in Section 2.2.2.

For both of the above solution techniques, the form of the active control is the same

as with the original performance index Eq (15):

u = -R-lBTpy (11)

An example demonstrating both of the above solution techniques follows.
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Table 10. Dashpot Constants and Performance Index Values for Example #4
Solution Technique min J min Jm.,

cl 130.1174 132.6323
dashpot C2 76.3213 290.2810
constants c3  84.9125 7.1011

C4  63.8805 33.1698
C5 77.5260 60.7109

J 484 648
Jm.oz 4,587 4,180

2.3.1 Example #4 - Fourteen DOF with Alternate Version of the Performance

Index. This example uses the same structure as Example #3, the aluminum truss

shown in Figure 4. The same weighting matrix for control was used. The magnitude of

the weighting matrix S for the damping coefficients is the same as in Example #3, but the

dimensions are different since the damping coefficients are being weighted directly. The

two solutions cannot be compared in the same manner as the solutions in Example #3 due

to the form of the performance index (refer to Eq (71)), so the values of 7 and J,.., will

be compared, as was done in Example #2.

The solution techniques were run with modified versions of the MATLAB routines

used in Example #3. An initial guess of c = 0 was used since a dosed form solution was

not obtained for this form of the performance index (Eq (69)).

The resulting damping parameters for the min J and min Jm.a. solutions are given

in Table 10. The dashpot constants are generally much greater in magnitude than those

found in Example #3, even though the magnitudes of the weighting matrices were the

same. This is due to the difference in the way damping was weighted and the different

dimensions on the damping weighting matrix. Increasing the weighting on the damping

parameters would decrease the magnitude of the dashpot constants in Table 10.

The active control gains were determined using Eq (11), where the matrix P is the

solution to the algebraic Riccati equation given by Eq (70). The active control gains for

the two solution techniques are listed in Appendix F.

Choosing the dashpot constants and active control gains such that the average value

of the performance index was minimized (min J) gave a 23% reduction in the value of the

performance index over choosing the dashpot constants and active control gains such that

the maximum value of the performance index was minimized (mn Jm.i.n The solution for

the minimization of the maximum value of the performance index gave a 12% reduction in
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Table 11. Damping Ratios and Natural Frequencies for Example #4
undamped min J main Jm,,
frequency C w,. [ ( w.

(rad/s) (rad/s) (rad/s)
319.3471 0.2747 305.9835 1.0000 372.6796

1.0000 144.3131
290.2645 0.0421 264.6086 0.0342 297.7766
281.1347 0.0911 261.0290 0.0322 266.2804
271.9703 0.3560 258.1865 0.0790 265.7667
264.1012 0.0236 256.3547 0.1430 256.2697
236.3806 0.2604 245.0388 0.0500 254.9518
223.1620 0.1130 239.0424 0.0683 236.8992
165.0056 0.2803 178.0419 0.1579 181.8822
150.4895 0.1637 157.9386 0.0934 153.5848
86.1426 0.1927 88.3404 0.1719 92.5748
64.8809 0.1588 66.3746 0.1125 69.4808
54.9372 0.0420 55.3605 0.0418 55.2103
31.9937 0.1202 32.5571 0.1187 32.4441

7.7196 0.0986 7.7597 0.0988 7.7609

J,, over the solution for the minimization of the average value of the performance index.

Therefore, using the min 7 solution produces only a 12% increase in the maximum value

of the performance index, but using the min Jm. solution increases the average value of

the performance index 23%.

Shown in Table 11 are the open loop frequencies (no active feedback control or passive

damping) and the dosed loop damping ratios and natural frequencies for the minimization

of the average value of the performance index (miin J) and the minimization of the maxi-

mum value of the performance index (min JmL,). The (min J,...) solution has two poles

on the negative real axis (C = 1). However, the other thirteen modes all have damping

ratios less than 0.2 while the (min 7) solution has four modes with damping ratios greater

than 0.2.

In this section two methods of obtaining solutions to the case in which the dashpot

constants are weighted as a one-time cost have been derived. These solution techniques

are similar to those developed in Section 2.2.2 in that one minimizes the maximum value of

the performance index (Eq (72)), and the other minimizes its average value (Eq (74)). An

example has been given to illustrate the methods and how they differ from the methods

presented in the earlier portion of the chapter.
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2.4 Summary

This chapter presented several new design techniques to determine optimal blending

of passive viscous damping and active control. The techniques are based on modified

versions of the standard linear quadratic regulator performance index of optimal control

theory. It was shown that it is not possible to find the optimum by solving a single algebraic

Riccati equation as in the standard linear quadratic regulator. However, several iterative

techniques involving a Riccati equation were developed.

The first version of the proposed performance index treated passive damping as a sep-

arate control force, which resulted in an additional control energy term in the performance

index. This formulation led to two solutions (one of which is closed form) that attempt to

minimize the error in the performance index due to using viscous dampers rather than a

truly active control force. The closed form solution gave a reasonable "first-cut" design,

especially for larger systems. It is useful when a "quick and dirty" design of active control

and passive damping is needed. The dosed form solution can also be used as a starting

estimate for the damping coefficients in two additional iterative techniques.

One of the additional iterative techniques minimized the maximum value of the

proposed performance index with respect to all initial conditions represented by the unit

bail Ilyoll = 1. If it is pertinent that the performance index remain below a certain level,

this is the method the design engineer is likely to prefer. Starting the iteration at the closed

form solution saved approximately 40 CPU minutes in computation time over starting at

zero for the 28th order example problem given in Section 2.2.4.3.

The other iterative technique minimized the average value of the proposed perfor-

mance index with respect to all initial conditions represented by the unit ball Ilyoll = 1.

This technique gives good overall response, and is more likely to give better performance

over the lifetime of the system since the average of the performance index is minimized

for all initial conditions represented by the unit ball IlYoll = 1. Using the closed form

solution as an estimate to start the iteration saved about 30 CPU minutes over starting

at zero. This method ran about 16 CPU minutes faster than the method that minimized

the maximum value of the proposed performance index. Both techniques yielded similar

performance relative to each other, and much improved performance relative to a system

with no passive damping.

The second version of the performance index treats passive damping as a one-time

initial cost. Although a closed form solution was not developed for this case, iterative tech-

niques for minimizing the average value and the maximum value of this performance index
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were developed. An example problem illustrated the two solution techniques. Minimizing

the average value of the performance index gave higher damping ratios for the majority

of the oscillatory modes than minimizing the maximum value of the performance index.

Hence, minimizing the average value of the performance index led to shorter settling times

for those modes. So the overall structure would tend to stop vibrating sooner.

Although the development of the second version of the performance index was only

carried out for the case of viscous damping, the extension to structures with viscoelastic

damping is straightforward, if the development for the first version of the performance index

(where damping is weighted in the same manner as active control) has been carried out.

Hence, the following two chapters on viscoelastic damping only present the development

for the first version of the performance index.
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III. Viscoelastic Damping Using a Classical Model

3.1 Viscoelastic Materials

Before proceeding to the problem of simultaneous optimization of active vibration

control and passive viscoelastic damping, it is appropriate to discuss the characteristics

of viscoelastic materials and how the behavior of viscoelastic materials is modeled in this

chapter.

The basic characteristic of viscoelastic materials at constant uniform temperature is

that the modulus varies with frequency, which leads to three behavioral regions for the ma-

terial [3]. In the rubbery region, which occurs at low frequencies, the viscoelastic material

dissipates energy well, which is why viscoelastic material is good for damping out vibra-

tions at low frequencies. In this region, the real part of the modulus stays fairly constant

while the imaginary part increases with increasing frequency. The glassy region occurs at

high frequencies. The real part of the modulus is again fairly constant, but the imaginary

part decreases with increasing frequency. In this region it is necessary to rely mainly on

active control for vibration suppression. The region between the rubbery region and the

glassy region is called the transition region. At these intermediate frequencies, both the

real and imaginary parts of the modulus increase with frequency, with the rate of increase

of the real part slowly overtaking that of the imaginary part. The delineation between the

regions is sometimes unclear, and is highly dependent on the type of viscoelastic material

being used.

The problems under consideration in this dissertation are those in which the vis-

coelastic dampers have been constructed so that one component of strain dissipates the

energy. Viscoelastic damping pads and constrained layer damping are examples of this

type of damping treatment. Damping treatments that typically don't fall in this category

are viscoelastic tuned-mass dampers and compression-type dampers.

Since one component of strain dissipates the energy, the mechanical properties of the

damper can be derived from a scalar relationship between stress and strain in the material.

A standard linear viscoelastic model relating stress o!(t) and strain c(t) is [8:14]

d a (t) j (t)
a(t) + • bi ) = Eo0(t) + E- & (75)dti t

i=1 d'i=1 i

where the values of the constants bi, E0, and E, depend on what viscoelastic material is

used. Usually the number of derivatives on strain is equal to the number of derivatives on
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stress (j = k). The next section assumes the more general case of the number of derivatives

on strain being less than or equal to the number of derivatives on stress (j _S k).

3.2 Simultaneous Optimization of Viscoelastic Damping and Active Control

This section is analogous to Section 2.2 of Chapter II, in which the equations that

minimize a chosen performance index were derived and an approximate solution was pro-

posed, since the solution that satisfies the derived equations was not obtainable. The first

task in this section is to derive the first order form of the equations of motion. Next a

quadratic performance index similar to the one used in Section 2.2 is proposed. Along

the way, expressions for the active control and a representative damping term are given in

terms of the state. Finally, the equations which minimize the performance index will be

derived, and an approximate solution presented.

In deriving the first order form of the equations of motion the viscoelastic material

and the structure are assumed undisturbed for t < 0. At t = 0, it is assumed that a

disturbance w0 occurs. Using the classical model Eq (75) for viscoelastic damping, the

equations of motion of the structure in the Laplace domain are

S2Mx(s) + G(s)Kx(s) + Kx(s) + Bu(s) + wo(s) = 0 (76)

where

G(s) = Go +- E 1_- Gs' (77)
1" ~ 1 bisi

The use of G, instead of E, indicates that the stresses are shear stresses only.

The matrix K, is analogous to the damping matrix D of Section 2.2. Like the matrix

D, the matrix K, is symmetric and can be written as b CbT where C is a diagonal matrix

of the unknown damping coefficients.

Defining b0 = 1 and multiplying Eq (76) by the summation E"=0 bs' clears the

denominator in the viscoelastic modulus G(s):

k 1
M -- biss+'x(s)-+-bv C GisIbvTx(s) +-KEbis'x(s)

i=0 i=0 i=0

k k

+ B 1bis'u(s) + Z- bs'wo(s) = 0 (78)
i=0 i=0
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With some manipulation, Eq (78) can be written in the time domain as a first order system.

This will be helpful in applying the approach used in Chapter II. But first, the time domaii

representation of the viscoelastic forces and the disturbance will be addressed.

The Laplace transform of the damping forces is given by the second term in Eq (76),

G(s)K,,x. For simplicity, the damping will be represented by the inverse Laplace transform

of the term in brackets in Eq (78):

v(t)- =Cb,T Gdx(t) (79)

i=0

A new disturbance is defined as the inverse Laplace transform of the disturbance

term in Eq (78):

w(t)- L-1 { bis'wo(s) (80)

Making use of Eqs (79) and (80), Eq (78) is written in the time domain with the

highest derivative on the position written separately from the summation:

dk+2 k+1 d' k d + k d'
b"Md-jjx(t)+M•'Ebi 2-- •X(t)+ b'v(t) + K -bE'x(t)+B -u(t) + w(t) = 0

+ i=2 i=O i=O

(81)

The next step is to express the highest derivative on the position as a function of the other

terms in Eq (81) (the dependence on time t has been dropped for convenience):

d k+2~ '
-MX M -' bi- 2  x + K L bi x]

bk i=2 T=0 dtj

1 P 1 1

bk ,= TOb b,- k

This relation can also be written as

d_ 1 k M d' dk+I
dt--2 x = -•[M-'Kx + M-1 Kbl- + + M- dKbi) +x bk-I d--•lx]

1 -d ' 1 1M- TM-1Bi= bi-u -i - M-lb~v - •M-lw (82)

bk i=O dtiU bk bk (2

To write this equation as a first order system will require the construction of a higher order

state vector y. While the state vector in the previous chapter contained only position and
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velocity, this state vector will include derivatives on position up to and including order

k + 1. By letting

y--[ XT jT xT ... dk+lxT/dtk+l ]T

a, -•M-'K i =0,1

_b&,

a. I - [biI -K • i =2,...,k

ak+l b"-- IJ

Eq (82) can be written as the following first order system:

0 1 0 ... 0
00 0 1 '

k di
0 y+ Eb, u

0 i=0
0 0 ... 0 I

Lh-M-'B

aO a,1 a 2  'ak+lJ

0 0

+ V+ w
0 0

L--LM-1b, b. - bkM-'J
k db

= Ay + BZ E TO u + Bvv + B~w
i=0

Now the disturbance w0(t) is assumed to be relatively short-lived compared to the

response of the structure. Assume the disturbance stops at to > 0. The result of the

disturbance is

y(to) = Yo (5)

If the disturbance is known, yo can be calculated, but since solutions independent of the

initial conditions yo are sought, the actual value of Yo is of little or no importance.
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Hence the equations of motion will be expressed as

d'S-Ay + B, E b-T,• u + B,,v (83)

i=0

y(to) = y0  (5)

Although the equations of motion are now in first order form, the derivatives on

the active control will cause a problem if full state feedback is used. If the active control

is allowed to have full state feedback, then the active control term in Eq (82) will have

derivatives on position that are higher than that on the left hand side of Eq (82). Since

interest lies primarily in active feedback control that consists of the constant gain feedback

of position x and velocity i, the active control u will be so constrained:

U = Gr[ xT *T ]T GriTy (84)

where IrT = I 0
0I 10 ... 01

The matrix G, is the matrix of feedback gains that will be determined by simultaneous

design. (Note that G, is a matrix and is not related to the modulus coefficients G,.)

It will be convenient to express the damping term v in terms of the state also. The

resulting form of v is identical to the form of the damping forces in Chapter II:

v=C[Gob T GibvT ... Gib T O ... olY

v = COy (29)

To simultaneously design the active feedback control gains and the damping coeffi-

cients, consider the performance index used in the previous chapter in which the passive

damping term is weighted as well as displacement, velocity, and active control:

2f 1(I T + VT T '

2 =: [ T]Q j + +Ru vSv) dt (85)
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To express the performance index in terms of the state vector y, a new weighting matrix

Q is defined such that

Y TQy X..T kT]IQ. {} (86)

Since the state vector y contains derivatives on position x up through the k + 1 derivative,

the matrix Q is semi-definite; it will have zeros on the diagonal corresponding to all

derivatives higher than the first derivative on x. The performance index can now be

expressed in terms of the state y:

j = (y +TQy uTRu + vTSv)dt (87)

Now that the performance index, the equations of motion, the active control, and the

passive damping term axe all expressed in terms of the state y, the next step is solving the

simultaneous design problem of active vibration control and passive viscoelastic damping.

The goal is to determine the damping coefficients (positive semi-definite, diagonal C) and

the active control feedback gains (G,) that

minimize: J = : •(y Qy + uTRu + vTSv)dt (87)

subject to: k = Ay + B Ebi, 7u + Bv (83)
i=O-

u = GrIt y (84)

v = C4y (29)

The approach used in Section 2.2 will be followed as closely as possible in this section.

Using the method of Lagrange multipliers to append the constraints to the performance

index gives

fIt yTQy + d y- 1

_uTRu + vTSv) - AI(k -- Ay - BI E -u-Bv)

- )•(u - G1 ,rTy) - \T(V - Cly)1
AT2 (u- Gr dt

Now the vectors y, u, and v are taken to be independent. So Eqs (29) and (84) imply

that the matrices Gr and C are independent of these quantities also. By definition, the

42



Lagrange multipliers \I, A2, and A3 are independent of each other and of y, u, v, G. and

C. From the calculus of variations, the necessary condition for minimizing the performance

index is that its change due to variations in the independent variables vanish for arbitrary

values of the variations [12:589]. Hence, to minimize the performance index J, compute

its change due to the variation of the independent variables:

1: (y,[ y Q +y± UT Ru + VTS•V) _ 6AT(•, Ay - B i bi- u - g~v)
oi=0

IT(:- Aby- B, bi.0b6. U) -- Bj6v)-- 2 (--G,~~y

-- 4(U -- (1Gr)XrTy - GrIrT6y) -56A(v - CAy)- _s4(bv - 6CAy - C46y)] dt

As in Chapter II, the final value of the state is assumed zero (Eq (6)) and the initial

condition is specified (Eq (5)), so integration by parts yields

)JAT6dt = \TbyI :j - X bdt

Integration by parts on the derivatives of the active control yields

1j. TB~bb =( -1)d' (dAT) Bib,(-i,-1)"
to Tti U) = E J'(-- 1) (Ttl(t-11U

+ i 1)i (dd XT) Blbibudt

Then the variation of the performance index 6J becomes

[J = (ymQ + + T A T LT GIrT + ATC4)by + \TUdt

1\1 ,\,+>2r r 3 (T Z ~-diATIB~bi ~6

(VT5 + ATIB, - \3T)bv + 26G,.Iy +

- 6AT,(S - Ay - B1  i - Bvv) - 6T(u - GrIrTy)
d=O t

ki----4-- lf\3T(v- C~y) dtEE -I T-•-•(1) 1 Bibibdi--
i=0 1=0 Ito
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Since the variations of the dependent variables are independent of each other, the

following equations need to be satisfied in addition to the three constraint equations:

0 = ii + ATAI + Qy (10)

k
u = -R- 1 E((-1)'bBT A1  (88)

i=O-

v = --S-BT\I (28)

A = X41 = 0 (89)

The minimization of the performance index is now expressed as a system of six

equations. The task is to find the active control gains and passive damping parameters

that satisfy these equations. The first step is to eliminate the multiple derivatives on A1 in

Eq (88). Due to the special form of the problem, this can be accomplished rather nicely.

The higher derivatives on A1 occur in matrix products IBT ) so concentration

will be on these matrix products, with the goal being to express the summation of matrix

products in Eq (88) as a single matrix product. The form of the input matrix B1 , the state

weighting matrix Q, and the plant matrix A will be important in this development. One

should remember that the sizes of these matrices is determined by the value of k - the

order of the highest derivative on stress (se' Fq (75)) - and on the Lagrange multiplier

A•1 in Eq (88). From Eq (10), the first derivative of the Lagrange multiplier is

A1 = -Qy - ATA1

so the product of the input matrix and Lagrange multiplier is

BTAi = BT(-Qy - ATA 1 ) = --BTAT\1 (90)

since, for systems in which there is at least one derivative on stress (k > 1),

BTQ=0

This occurs because the one non-zero matrix element in the composite matrix B1 is mul-

tiplied by a zero matrix element in the composite matrix Q (see Eqs (83) and (86)). If the

44



highest order derivative on stress is second order or greater (k > 2), the second term in

the summation in Eq (88) is given by

B Til = -BTAT•i - BTAT(qy +ATAI) = (_1) 2BT(AT)2 ,i (91)

In this case BTATQ = 0. It follows easily that the general form for the matrix product in

the Oth term of the summation in Eq (88) is

d' = (x1)BT(AT)iA1  for i < k (92)

Substituting Eq (92) into Eq (88) produces an expression for the active control that does

not contain derivatives on Aj:

u=-- 1 B T (1 ATi) x 1 (93)U RIbi(,ob(A)

This can be written more compactly by letting IA j=0 b,(AT) :

u = -R-'BITIAAI (94)

Substituting Eq (94) into Eq (84), and Eq (28) into Eq (29) gives the following relationships

between the active control gains, the damping parameters, and the Lagrange multiplier

Aj:

GriTy = -R-1 BTIAAI (95)

C-y = -S-lBvTAI (96)

Since G, and C are constrained to be constant, solutions of the form A1 = Py where

P= 0 will be sought. With this constraint and y not specified, Eqs (95) and (96) lead to

GrItT = -R-'BTIAP (97)

CA = -S-lB Tp (98)

Now I'TI. = I, so the active control gains are given by

G, = -R-'BTIAPIr (99)
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The Lagrange multiplier has been effectively eliminated from the derivation and the

active control gains and damping parameters expressed in terms of the matrix P. Before

solving for P, one needs to address the summation term involving the higher derivatives

on active control u that appear in Eq (83). It will be shown that this summation can be

expressed as a single term that varies linearly with the state y.

From Eq (84), the first derivative on active control can be written in terms of the

state:

ii = G, } GrIT'y (100)

where

0 1 0 ... 0
0 0 1 '

= ". ". o (101)

0 0 ....... 0

Similarly, the second derivative on active control can also be written in terms of the state:

ii { G, } - GI 1JT y (102)
di3

Extrapolating from Eqs (100) and (102), the i& derivative on active control can be ex-

pressed in terms of the state:

TO(f)y

Hence, the sum of the derivatives on the control u can be expressed in terms of the full
state vector, y,

rL d ]di0 k~-T ".b G I T ( ) y G I T b,(f )

bGwI= 1) y = GrI FTIi' y (103)
---- i-----0O

where the matrix 112 is defined as

112 = bi (fi)]
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Substituting Eq (99) into Eq (103), and Eqs (28) and (103) into Eq (83) gives an expression

for the first derivative of the state that is in terms of the state and the matrix P

" = Ay - BIR-'BTIAPfII2 y-BS-1 BVT py (104)

where

I =IT (105)

Recalling that the Lagrange multiplier can be expressed as AI = Py, Eq (10) can be

written in terms of the state vector:

0 = Pk + ATpy + Qy (106)

Substituting for the time derivative of the state vector k (Eq (104)) in Eq (106) produces

an equation solely in terms of the matrix P and the state y:

P(Ay - BIR BI + ATPy + Qy = 0 (107)

For general y, the above equation leads to a non-symmetric quadratic matrix equation:

PA + ATP - PBlR'B-IIAPf,,I12 - PBVS-IBYTP + Q =0 (108)

This equation serves the same role as the algebraic Riccati equation Eq (40) derived in

Chapter II. However, due to the asymmetry of the third term, it is not a Riccati equation.

Because the equation is non-symmetric, its solution is also non-symmetric. The solution

matrix P of Eq (108) can be found using the technique outlined in Appendix C.

Once the solution matrix P is determined, the damping coefficients C can be deter-

mined in the same manner as in Section 2.2.1 - minimize the Frobenius norm

IIJC + S-1 B'PIIF (36)

where P is the solution of Eq (108). With

W = -S-'BvTp
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the elements of the damping coefficient matrix C are

Cu =max EJ"=I• ,0 ; Cj, =0 for i~j (37)

Thus, a dosed form solution for the damping coefficients has been found. The active

control gains are given by Eq (99).

The damping coefficients and active control gains just determined are an approximate

solution to the optimization problem posed at the beginning of this section. The multiple

derivatives on the control in the first order state equation Eq (83) make the mathematics

intractable when trying to refine the choice of active feedback gains. Specifically, the

ability to express the higher derivatives of Lagrange multiplier )A in terms of the state was

due largely in part to the state weighting matrix Q having (at most) only two non-zero

matrix elements, one weighting position x and one weighting velocity k. If the damping

parameter matrix C is chosen a priori, then weighting on the state in the performance

index Eq (87) becomes Q + *TCSCO (refer back to Eqs (15) and (38) of Chapter II). In

general ,TCSC0 does not have the nice form of Q; it may contain non-zero weightings for

the derivatives of the position vector contained in the state vector up to the k'h derivative.

So Eqs (99) and (37) represent the general (approximate) solution to the minimization

problem posed in this section.

In an alternative approach to optimizing viscoelastic damping and active control

simultaneously, the following two subsections take advantage of the fact that the matrix

Q+ T CSC. has no weighting on the k + 1 derivative of position (k 1 x).

3.2.1 Solution Technique for Minimizing the Mean Performance Index. If the

viscoelastic material is modelled using only one derivative on stress and only one on strain,

two alternative methods of determining damping coefficients and active control gains can

be developed that are independent of initial conditions. One method consists of minimizing

the average value of the cost functional over the unit ball Ilyoll = 1. The second method

minimizes the maximum value of the cost functional over the unit ball Ulyoll = 1.

Given the active control gains G, and the damping coefficients C, the first order

state equations are:

= (A + BIG, ITI12+B1C4)y (109)
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Then, using the same procedure outlined in Appendix B, the value of the performance

index, Eq (87) can be expressed in terms of the initial state:

J = IYo PYO (110)

The matrix P1 satisfies the following Lyapunov equation (refer to Appendix B for its

derivation):

PI(A + BIGITI12+B,,C4) + (A + BIGIwTIi 2 +B,,CO)TPI

+ (Q + I,G'TRGI, 1T+#TCSC#) = 0 (111)

The subscript I on P1 is to distinguish it from the solution of Eq (108). From Section 2.2.2,

The average value of the cost functional over the unit ball is given by

I = traceP1  (112)
2n

Hence, minimizing the trace of P1 minimizes the average value of J over the unit ball

Ilyoll = 1, regardless of system order. In this method, given the damping coefficients C,

one solves first for the active gain matrix G, using the same procedure as in Section 3.2.

The active gain matrix is of the same form as that in Section 3.2,

G, = -R`BTIAPI, (99)

but the matrix 1A has a slightly different definition:

1A = I + b1 (A + BC4) T

The matrix P satisfies a different non-symmetric quadratic matrix equation than the one

given by Eq (108):

P(A + BC$) + (A + BVC, )TP - PBRR-.BTIAPf I (Q + tTCSC4) = 0 (113)

Like the matrix 1A, the matrix 112 also has a slightly different definition in Eq (113) than

in Eq (108):

112 = I + b1 f1
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where fI is defined by Eq (101).

In summary, once an initial guess for the damping coefficients C is made, the matrix

P is found by solving Eq (113), the active control gains are calculated via Eq (99), the

matrix P1 is found by solving Eq (111), and finally the average value of the performance

index is calculated using Eq (112). Iteration with respect to C is carried out until the

trace of P1 is minimized.

This subsection has derived a technique for minimizing the average value of the cost

functional over a representative sample of initial conditions. The next subsection will

present another technique for optimizing viscoelastic damping and active control simulta-

neously when there is only a first derivative on stress and strain.

3.2.2 Solution for Minimizing the Maximum Performance Index. A similar ap-

proach to the one just presented for minimizing the average value of the performance index

is used for minimizing the maximum value of the performance index for all Ilyoll = 1. As

in Section 2.2.3, this approach requires determining the two norm of P1 , since

J•ItP 1 12  (114)

In this method, iteration with respect to C is carried out until IIPI112 is minimized. In each

iteration step, the matrix P is found by solving Eq (113) for the current value C, the active

control gains are calculated via Eq (99), the matrix P1 is found by solving Eq (111), and

finally the maximum value of the performance index is calculated using Eq (114). Based

on this value, new damping parameters are selected for the next iteration. This approach

might be very conservative in general, since the initial condition Yo that maximizes the

performance index may not be encountered very often.

Examples follow which illustrate the three different solution techniques developed in

this section.

3.3 Example Problems

3.3.0.1 Example Problem #1 - Single DOF System. In this example, the

solution techniques developed in this section will be applied to the single degree of free-

dom spring-mass-damper system of Chapter II. A hypothetical viscoelastic damper will be

modelled with one derivative on stress and one on strain. The parameters for the model are
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Go = 6.8948 x10s N/m 2 (1.0 lb/in2 )

G, = 4.8264 x104 N-s/m 2  (7.0 lb-sec/in 2 )

b, = 0.001 sec

The the equation of motion in the Laplace domain is

•2x 1+ 7s
1 -X-+ 1.01cx+ 0.5x = -u (115)
1 +0.001s,

Converting to the time domain,

d3
d-x = -500x - 0.5: - 1000i - 1000(u + 0.0014) - lO00c(x + 7k) (116)

The state space equation is

J 0 1 0 0
y= = 0 0 1 Y+ 0 (U+0.0016)

1-3x -500 -0.5 -1000 -1000

+ 0 c 11 7 0 1Y

- 1000

The weightings on the state, active control, and passive viscoelastic damping are

0.5 0 0

0 1 , R-=0.1, S=0.1 (117)

0 0 0

The solutions for the three different solution techniques developed in this chapter are given

in Table 12. The active gain matrices Gr are included as well as the viscoelastic coeffi-

cients c. The Frobenius norm solution (min IIHIIF) gave a higher value of the viscoelastic

coefficients and lower feedback gains than either of the other two solutions. Its perfor-

mance, as measured by trace P and 11P112, was not quite as good as the other solutions,

but it was within 10%. It is not surprising that the value of the Frobenius norm for the

solution minimizing trace P (and therefore the average value of the performance index) is
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Table 12. Example Problem #1 Results
Solution Technique min IHIIr I min trace P min IP172

c 0.3795 0.1813 0.1122
[, 1.3568 2.5293] [1.6676 2.8054 ] [1.7132 3.0486

trace P 1.1924 1.1256 1.1374

1•P112  0.9692 0.8902 0.8830
IIHIIF 0.3096 0.5406 0.6731

U2

L 3

Figure 5. Example Problem - Truss Strurture

smaller than that for the solution minimizing IlPik• since the former solution is dloser to
the Frobenius norm solution.

9.3.0.2 Example Problem #2 - Fourteen DOF System. In this example, the

solution techniques developed in this chapter will be app~lied to a viscoelastically damped

version of the planar aluminum truss used in Example #3 in Chapter II. In Figure 5,

the u,'s represent active control forces, and the c,'s represent the unknown damping pa-

rameters to be determined. The hypothetical viscoelastic material was modelled using

one derivative on stress and one on strain. The material is similar to the one used in the

previous example problem, but the parameters G1 and b1 are chosen to be ten times their

counterparts in the previous example. They are chosen in this manner so that the natural

frequencies lie in the transition region. The parameters for the model are
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Figure 6. Viscoelastic Modulus Plot

Go = 6.8948 X10 3 N/m 2  (1.0 lb/in2)

G, = 4.8264 x105 N-s/m 2  (70 lb-sec/in 2)

b, = 0.01 sec

The real part (G') and imaginary part (G") of the modulus G(s) is shown in Figure 6.

The natural undamped frequencies of the truss He in the transition region, with most of

the natural frequencies near the glassy region. The two vertical lines indicate the range of

the natural frequencies.

Using the development presented in Section 3.2, the equations of motion can be

written in the state space form:

Sdi
"=Ay + B b, -•u + Bvv (118)

Since the state vector contains position, velocity, and acceleration, the dimensions of the

state vector y are 42x1. There are four control inputs, so the control vector u is 4x1. The

five viscoelastic dampers lead to a damping parameter matrix C that is 5x5 and diagonal.

Therefore, A is 42x42, B is 42X4, B, is 42x5, and $ is 5x42.

The state weighting matrix Q. was chosen such that yTQy equalled the total me-

chanical energy in the system. Thus Q, was formed using the mass and stiffness matrices,
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Table 13. Example Problem #2 Results
min IIHIIF min trace P min IIPII2

cl 3.335 2.019 0.372
C2 2.443 1.554 1.092
C3 2.441 1.605 0.896
C4 3.330 2.012 0.902
c5 2.973 1.857 0.715

computation time 3 min 10 hr 54 min 23 hr 32 min
C - Passive only I .0066 to .1137 .0042 to .0875 .0018 to .0511

- Complete Solution .0217 to .2491 .0193 to .2591 .0097 to .2591

M and K. The weighting matrices are

S [ j, R = 0.11, S = o.01i (119)
0 M I I

The solution techniques were run on a VAX 6420 using MATLAB routines. Special

routines were written that calculate the solutions to the non-symmetric quadratic ma-

trix equations derived in this chapter, using the algorithm given in Appendix C. The

minimization algorithm utilized is the Nelder-Mead simplex method (23].

The values of the damping parameters for the three solution techniques, along with

their approximate computation times, are given in Table 13. The active control gains for

each set of damping parameters axe computed using Eq (99) and the corresponding matrix

P. For the min IIHIIF solution, this is the matrix that solves Eq (108). For the other two

solutions, it is the matrix that satisfies Eq (113) for the specific damping parameter matrix

C. The active control gains are listed in Appendix F. Because the active control gains for

these two solutions are calculated for a certain diagonal damping parameter matrices (in

fact, the active gains and damping coefficients are essentially calculated simultaneously),

the damping ratios for the complete solutions are better than those for the min IIHIIF

solution, whose active control gains are based on a non-diegonal parameter matrix (the

damping coefficients are those that give a diagonal damping parameter matrix that best

approximates this optimal solution). The range of damping ratios with just the viscoelastic

damping portion of the solution implemented (i.e., setting the active gains to zero) is shown

in Table 13, as well as the range of damping ratios for the complete solution.

How well the complete solutions do in approximating the optimal solution, Eqs (98)

and (99), is indicated in Table 14. It gives a measure of how close the attainable systems
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Table 14. Example #2 Relative Changes in Eigenvalues

C W. IIHIIF trace(P) IP112
0.0863 322.7332 0.1612 0.1130 0.0890
0.0843 291.9234 0.1578 0.1045 0.0831
0.0637 283.4323 0.1275 0.0859 0.0589
0.0642 272.6237 0.1159 0.0735 0.0594
0.0383 264.3360 0.0830 0.0584 0.0401
0.0943 241.8979 0.1034 0.0952 0.0857
0.0932 226.7390 0.1245 0.1039 0.0850
0.1814 172.5763 0.2119 0.1725 0.1548
0.1689 156.5123 0.1940 0.1585 0.1408
0.2862 93.6310 0.2286 0.1989 0.1986
0.3002 70.6018 0.2496 0.2131 0.1985
0.1585 55.9026 0.0985 0.0966 0.0943
0.2859 34.2871 0.1373 0.1181 0.1031
0.1930 7.8979 0.0783 0.0781 0.0780
1.0000 94.9204 0.1546 0.4417 0.3909
1.0000 109.3135 0.5831 0.2399 0.2751
1.0000 107.3431 0.4012 0.1400 0.1261
1.0000 105.7911 0.4360 0.2859 0.1649
1.0000 102.6897 0.0999 0.3035 0.1397
1.0000 101.6959 0.4445 0.3626 0.1822
1.0000 99.5807 0.0343 0.3158 0.1842
1.0000 99.9061 0.4822 0.0338 0.0368
1.0000 100.0000 0.0000 0.0000 0.0000
1.0000 100.0000 0.0000 0.0000 0.0000
1.0000 100.0000 0.0000 0.0000 0.0000
1.0000 100.0000 0.0000 0.0000 0.0000
1.0000 100.0000 0.0000 0.0000 0.0000
1.0000 100.0000 0.0000 0.0000 0.0000

are to the optimum system produced by the optimal solution. The relative changes in the

eigenvalues are computed according to the formula

jA1(A) - A,(Aopt)j
jA,(Aopt)I

The damping ratio and natural frequency listed in the table are those associated with the

optimum system.

Table 15 lists the changes in the optimum system's oscillatory eigenvalues in increas-

ing order. The relative changes range from 4% (minimum two-norm solution) to 25%

(Frobenius norm solution). Tables 14 and 15 indicate that the solution techniques are
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Table 15. Example #2 Relative Changes in Eigenvalues in Increasing Order

H1HIIF trace(P) IIPI12
0.0783 0.0584 0.0401
0.0830 0.0735 0.0589
0.0985 0.0781 0.0594
0.1034 0.0859 0.0780
0.1159 0.0952 0.0831
0.1245 0.0966 0.0850
0.1275 0.1039 0.0857
0.1373 0.1045 0.0890
0.1578 0.1130 0.0943
0.1612 0.1181 0.1031
0.1940 0.1585 0.1408
0.2119 0.1725 0.1548
0.2286 0.1989 0.1985
0.2496 0.2131 0.1986

good approximations to the the optimal solution. The relative changes are higher than

in Chapter II, Example #3, but this is to be expected since the state vector is larger (42

states versus 28 in Example #3) and there is a constraint applied to active control as well

as to passive damping.

This section has developed three solution techniques for a classically modelled vis-

coelastic system analogous to the techniques developed for a viscous system in Chapter II.

A closed form solution was derived, as well as two iterative solutions, one of which mini-

mized the average value of the performance index over the unit ball, and one that minimized

its maximum over the unit ball.

3.4 Multiple Damping Materials

Up to now, it has been assumed that only one type of viscoelastic material is used

for daming. This section will expand the results of Section 3.2 to the case where more

than one type of viscoelastic material is present in the structure. As stated in Section 3.1,

the viscoelastic dampers are assumed to have been constructed so that one component of

strain dissipates the energy, so a scalar relationship exists between stress and strain in the

material.

Only two different damping materials will be considered, but the derivation can be

adapted for more materials. Both materials will be assumed to have a frequency dependent
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modulus of the form
Go + G1s

1 + bs

Although the assumption that there is only one derivative on stress has been made here,

the derivation can be expanded for higher derivatives on stress. Two hypothetical materials

with simple moduli are used so that it is easier to follow the derivation.

The first step to expressing the equations of motion as a first order system is to write

the equation of motion in the Laplace domain:

S2Mx + 1bvGo, + GlsCib Tx +b 2 G02 + G12 s. -bT +x- Kx + Bu = 0 (120)

1 + b1s 1 1+b 2s v2

It will be convenient to clear the denominators in Eq (120):

[1 + (b, + b2)8 + bib 2 s2]s 2Mx + b, 1(1 + b28)(Goj + Glis)CibvTx

+ by2(1 + b1s)(G02 + G128 )C 2b1 2 Tx + K[1 + (b, + b2)s + bib 2s2]x

+B[1 + (b, + b2)8 + b1b282]u = 0 (121)

As in Section 3.2, the Laplace transform of the damping will be represented by the

terms which contain the damping parameter matrices. For the first damping material, the

Laplace transform of this term is

v1 (s) = [Go1 + (Gojb2 + G11)s + G11b2sCi]b.1x(s) (122)

In the time domain, this can be written as

v1 (t) = CbT 1 I[ G 01 I (Gob 2 + G 1 1)I Gjb 2 I] { (123)

Similarly, the expression for the representative damping due to the second material can be

written in the time domain:

v 2 (t)= C 2 bv2 T [ G 02 1 (GaObA + G12 )I G12bI] (124)
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Rewriting the equation of motion Eq (121) in the time domain, and then substituting

Eqs (123) and (124) into it leads to the following differential equation:

bjb 2M (b+ b2)M + M+ + b01vv + b2 2v 2 + Kx

+ (b, + b2)Ki + b1b2 MK + Bu + (b, + b2)Bii + b~b2Bu = 0 (125)

Hence the highest derivative on x, d-x can be written as

d-4x=-b-M-1KxK_ blb2bM-.Kk+ M-1K + I k
T b~b2  b~b2  I b1b2j

b b2 d 3  bb 2
1 M-Mbviv, - 1- M-'bv2v2 (126)

b1b2  bjb2
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Following the procedure of Section 3.2, Eqs (82) - (83), this equation can be written as a

first order system:

k 0 I0 0 x

J 0 0 I 0 1
'. 0 0 0 I
d4s4-x _--..M-'K _b-.+b M-1K _M-1K_- L _b. I I

J ,b 2  b, b2 dbt2

0

0
+ [u + (b, + b2 )ii +blb 2ii]

0

T2 M-IB

0 0

0 0
+ v, + V2

0 o

- b-~-•M bvl

(127)

For compactness, the matrices can be represented by a single letter:

= Ay + B, [u + (b, + b2)il + b1b2ii] + Blvl + B, 2v 2  (128)

Eqs (123) and (124) can be written in terms of the state y:

vI(t) = C1Ply (129)

v 2 (t) = C2Oay (130)

Now that the equations of motion have been expressed in first order form, a perfor-

mance index is needed. Following the same approach as in the single damping material
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case, the performance index will be defined as

a = 1 ([XT iT]Q. { }+ UTRu + VTSIlvI+VTS 2V2 dt (131)

As in Section 3.2, the state weighting matrix Q is constructed such that

YTQY[XT ETJ~{ (86)

and the matrix I'T is constructed such that

u = G,[ xT iT ]T = GITy (84)

Appending the constraints Eqs (128), (84), (129), and (130), to the cost functional Eq (131)

and substituting in Eq (86),

1= j [I(yTqy + uTRTU + vTSivi÷vTS~v 2 )

-- )T {" - Ay - Bj[u + (b, + b2 )i" + bjb 2fi]-B~jv1 -B, 2v2 )

- T(u - GrIrTy) - \T(vI - C 1 4py) - A_(v 2 -\T

C2 42Y) dt

Setting the variation of J equal to zero, and using the same procedures as those used

in the single material case (Section 3.2), results in six simultaneous equations:

S. = Ay + Bj[u + (b, + b2)ii + bjb 2fi]J+Bv1v--BvzV2  (132)

u = GritTy (133)

0 = i + ATi + Qy (134)

0 = Ru + BIIAXI [IA = I + (b, + b2)11 + bib 2Il] (135)

C1 q1 y = --S,-lB,,Tl\ (136)

C =4•2y = -S 2 -lB, 2 TA' 1  (137)

Since C 1 and C2 are constant, Eqs (136) and (137) imply that A1 is of the forxl

Al = Py. As in Section 3.2, solving the above simultaneous equations leads to a non-
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k 1 10 -ZI k2= 10 -X2
k 1 1= =1M2=1k 2 l

C1 C2

Figure 7. Two Degree of Freedom System

symmetric quadratic matrix equation:

PA + ATP - PB-R'BTIAPII 2 -PBlS-7Bl T p _ PB, 2Sl'B.2TP + Q = 0 (138)

This equation is solved in the same manner as the one for one material, Eq (108) (see

Appendix C). The damping parameters are found by using the same dosed form solution

technique as in Section 3.2, which is given by Eqs (36) and (37). The two norms which

need to be minimized to determine the damping coefficients are

IIC14I1 + Sj-lBVlTPIIF (139)

and

IIC 2 2•2 + S2 -1 Bv 2
T pIIF (140)

This section derived simultaneous design of active vibration control and passive vis-

coelastic damping when more than one type of viscoelastic material is used in the structure.

An example problem follows to demonstrate the techniques derived in this section.

3.4.1 Example Problem #3 - Two Viscoelastic Materials. To illustrate the case

of using two different viscoelastic materials for damping in the same structure, the solution

technique developed in this section will be applied to the two degree of freedom system in

Figure 7. The viscoelastic behavior of the hypothetical dampers cl and c2 will be given by

GI(s) 1+7 and G 2 (S) 1 + .005s (141)

respectively.
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Following the procedure outlined in Section 3.4, Eqs (120) through (140), and using

the weightings

20 -10 0 0

-10 10 0 0
S1 =S 2 =0.01, R=0.1I

0 0 1 0

0 0 0 1

the damping parameters are determined to be

cl = 1.75

C2 = 1.16

The control gains were

E 2.88 0.02 1.56 0.44

-0.45 2.03 0.44 1.06

This example has demonstated the feasiblility of designing passive viscoelastic damp-

ing and active feedback control when more than one viscoelastic material is used for damp-

ing.

3.5 Summary

In this chapter, several new design techniques to determine optimal blending of pas-

sive viscoelastic damping and active vibration control were presented. The techniques are

based on a standard linear viscoelastic model and on a modified version of the standard

linear quadratic regulator cost functional of optimal control theory. The proposed cost

functional treats passive damping as a separate control force, which results in an addi-

tional energy term in the cost functional.

Two iterative techniques were developed in addition to a closed form solution. The

closed form solution was a least squares solution. One iterative technique minimized the

maximum value of the proposed cost functional. The other iterative technique minimized

the average value of the proposed cost functional. All three techniques yielded similar
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performance relative to each other, although the closed form solution took considerably

less computation time.

The three solution techniques were applied in Example #1 to a single degree of

freedom spring-mass-damper system. These techniques were confirmed in Example #2 as

being useful evo'i when natural frequencies lie in the transition region of the structure. The

applicability of the solution procedures were demonstrated in Example #3 for a structure

in which damping is provided via two different viscoelastic materials.

One of the drawbacks of the techniques presented in this chapter is that the standard

viscoelastic model may not adequately model the behavior of the viscoelastic material.

Another drawback is that the formulation of the problem could yield very large state

space matrices. During an attempt to solve a fourteen degree of freedom problem with five

derivatives on stress strain, the large state space matrices caused computational difficulties

in trying to solve the non-symmetric quadratic matrix equation, Eq (108). The approach

presented in the following chapter overcomes these drawbacks by using a more accurate

representation for the behavior of the viscoelastic material, and by keeping the system

order down by using the more traditional state vector which consists of only position and

velocity.
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IV. Viscoelastic Damping Using a Four Parameter Fractional Derivative Model

4.1 Brief Overview of Generalized Derivatives as Applied to Viscoelastic Materials [11]

In this chapter, fractional order derivatives will be used to model viscoelasticity

as opposed to the integer order derivatives used in the previous chapter. But before

applying fractional order derivatives to structural problems, it is necessary to understand

the properties of generalized derivatives and their use in the theory of viscoelasticity.

As will be shown, generalized derivatives behave in much the same way as conventional

derivatives. When used to model viscoelastic materials, generalized derivatives typically

provide an excellent model over a broad range of frequencies [5]. To show how generalized

derivatives can be used to model viscoelastic materials, it is appropriate to first present

the properties of generalized derivatives, especially the Laplace and Fourier transforms.

The generalized derivative is defined as [27:59]

Da[d(t)] - r(1 a) dt (--) dr for < O < 1 (142)

This definition is only valid for a < 1. However, the definition requires only a slight

modification for a generalized derivative of order greater than one. Let m be a nonnegative

integer, and a de.ned as before. Then [27:59]

1 d"'n~ f0t z(r)
Dm+a[x~t)]- r(1- c) dtm+l (t X-() dr for 0 < a < 1 (143)

Although imposing in the time domain, in the Laplace (or Fourier) domain the

generalized derivative manifests itself as a fractional power of s (or w). To calculate the

Laplace transform, a change of variables will be useful:

r =t-1

This leads to

D'[x(t)] r(1- a) dt- 7 7 d for-<a<1 (144)

Applying Leibnitz's rule,

D0 [x(t)] = 1 I) I--x(t- qi)d,77+ x(l ) for 0_< a < 1 (145)r(1- a) Jo qa at r(1 -
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Noting that the integral is a convolution integral, and that

L [r( ) = (146)

the Laplace transform is

L[DG[x(t)]] = -i-_- (sL[x(t)] - x(O)) + (O) (1:7)
8 1--a

or, more simply,

L[D*[z(t)]] = s*L[x(t)] (148)

where the Laplace transform is defined as

L[x(t)] = j x(t) e-" dt (149)

For initial conditions equal to zero, the Laplace transform of a generalized derivative of

order a has the same property as the conventional derivative: the transform is sa times

the transform of the function. In fact, the generalized derivative satisfies many of the

same properties as the conventional derivative, particularly linearity and the composition

property [27:69-841:

Da[y(t) + z(t)] = D*[y(t)] + D*[x(t)] (150)

D-[DPEx(t)] = D-+P[x(t)] (151)

Linearity holds for a and 3 greater than or equal to zero. The compostion property holds

for functions bounded at t = 0.

The Fourier transform is defined as

Ffx(t)] j= x(t) e-i" dt (152)

If x(t) = 0 for t < 0, then the Fourier transform can be written as

F[x(t)] = x(t) e-iw dt (153)

It is easily seen that the Fourier transform of a generalized derivative is

F[D•'[x(t)]] = (iw)*F[x(t)] (154)
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In the preceding discussion, the only restriction placed on a was that it be a nonnega-

tive real number less than one. However, for engineering applications, an irrational number

can be approximated by a rational number. So a will now be restricted to be rational as

well. Using the term "fractional derivative" will indicate this additional restriction.

The standard linear viscoelastic model relating stress and strain that was used in

Chapter III will be useful in illustrating the use of fractional derivatives in viscoelastic

theory:

a(t) + - d'ba(t) = Eoc(t) + _ c E,
dti i= t,' (75)i=1 dt =

Recalling Scott-Blair's proposal that fractional derivatives could be used to relate time-

dependent stress and strain in viscoelastic materials, replace the -conventional derivatives

in Eq (75) by derivatives of fractional order. The result is the general form of the fractional

derivative viscoelask'c model [41:

M N

a(t) + E b. D,-[cT(t)] = Eoc(t) + L ED"n[e(t)] (155)
M=--1 n----

A large number of materials can be modelled by replacing each sum in Eq (155) by

a single term involving a fractional derivative:

or(t) + b DY[a(t)] = EoE(t) + EID*[L(t)] (156)

Invoking the Second Law of Thermodynamics requires that the parameters satisfy the

following constraints [6]:

E o >_ 0 E1  _ bEo

E1  > 0 a - (157)

b > 0

These constraints ensure nonnegative energy dissipation and nonnegative work. The stress-

strain relation in the Laplace domain is

a(s) _ Eo + Eis' (158)
C(s) 1 + bea

This is known as the four parameter model, and has been shown to be very accurate over

several decades of frequency [5, 32, 331.
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Unfortunately, using the same approach as in the classically modelled viscoelastic

problem will lead to the appearance of a fractional order derivative on the control forces

as well as on the position vector [341. Integration by parts after taking the variation of

J leads to an infinite sum. To find a way around these difficulties for a structure mod-

eled using fractional derivatives, the fact that the position vector is a function comprised

of exponentially decaying sinusoids and algebraically decaying relaxation modes will be

important. The relaxation modes describe the non-oscillatory return of the structure to

its equilibrium position. Hannsgen and Wheeler [161 point out the fallacy of trying to

control relaxation modes: decay rates are essentially the same as those without feedback.

They note that separating motion into creep modes and oscillatory modes appears to be of

fundamental importance in stabilization and co trol problems involving viscoelastic damp-

ing. They also point out that systems in which viscoelasticity is modelled using fractional

derivative models are among the systems that are the least susceptible to destabilization

due to delays in boundary feedback [15].

Hence, the design techniques presented in this chapter only address the control of

the exponentially decaying modes. The error introduced by this approximation is given

in Appendix D, and is bounded. To control only exponentially decaying modes, one can

approximate the state space equations by retaining only the exponential eigenvalues and

eigenvectors. The next section derives this approximation.

4-.2 Simultaneous Optimization of Viscoelastic Damping and Active Control

In this section, solution techniques for determining viscoelastic coefficients and active

feedback gains that optimize performance indices like those in Section 2.2.2 are provided.

A key point will be the derivation of the approximation of the first order state equations

in the time domain.

Before deriving the time domain approximation of the first order state equations, the

equations of motion will be expressed in the Laplace domain. The stress-strain relation in

the Laplace domain is represented by G(s):

G~)=Go + Gjs- 19G1+Gbsa (159)

The use of Go and G1 instead of E0 and E1 indicates that the stresses are shear stresses.

The equations of motion in the Laplace domain for a multiple degree of freedom system
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with viscoelastic damping modelled using the four parameter fractional derivative model

are given by [4]

s2 Mx(s) + G(s)Kx(s) + Kx(s) + bu(s) = 0 (160)

Before expressing the equations of motion in the time domain, it is appropriate to

define the stress relaxation modulus. The stress relaxation modulus G,., (t) gives the time

history of the stress in a viscoelastic material which is subjected to a unit step in strain at

time t = 0 [35]. Thus the relaxation modulus is

G,,I(t) = L-' f-G-- (161)

As in the previous two chapters, the matrix K, is symmetric and an be expressed as

K, = bCbT

where C is a "-agonal matrix of the damping coefficients to be selected by the design

process.

To control the exponentially decaying modes of the structure, an aprroximation to

the equations of motion represented by Eq (160) will be formulated in the time domain

as a first order system that has identical eigenvectors amd eigenvalues as the harmonic

exponential response of Eq (160). This will require an initial guess as to the values of the

viscoelastic damping coefficients.

Taking the inverse Laplace transform of Eq (160), the equations of motion can be

written in the time domain

Mi(t) + b, Cbb'T d Gei(t - r)x(r)dr] + Kx(t) + bu(t) = 0 (162)
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In first order form, Eq (162) becomes

{R} ([ M -K 0]{ } ±K { M'V 'Gel(t - T)x(Tr)dT

+ u I(163)

Defining a state vector in tems of position and velocity,

it is apparent that the term in parentheses in Eq (163) is a time dependent vector function

of the state. It will be represented by an operator A acting on time and state, A(t,y).

Hence, with the input matrix defined as

0
KM-lb

the equations of motion are expressed in compact, first order form:

S= A(t,y) + Bu (164)

The time dependent vector A(t, y) can be approximated by Ay where A is constructed

using the eigenvectors and eigenvalues associated with the exponentially decaying modes

of the open loop (u = 0) equations of motion. Devereaux [11] presents an algorithm which

calculates all the eigenvectors and the eigenvalues of systems in the form of Eq (160). The

eigenvectors and the eigenvalues of interest here are those that lie in the upper half of the

principal sheet of the s-plane (Im (Aj > 0)). The matrix %F will represent the matrix of

eigenvectors associated with exponential decay,
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where n is the length of the position vector x. A diagonal matrix of the corresponding

eigenvalues will be represented by A:

A1  0 ... 0

o A2 ... 0A=

0 0 ... IAn

The approximation of A(t, y) will be constructed using the matrices of eigenvalues A and

eigenvectors W, and their conjugates, A and WP. Because the approximate plant matrix

Awill be constructed using eigenvectors, eigenvalues, and their conjugates, only those

systems that are underdamped will be considered.

The next step is to define a diagonal matrix A of the composite eigenvalues and their

conjugates, and a modal matrix %,:

A 01q, W(165)

The approximate state matrix can now be written in terms of the eigenvalue matrix A and

the modal matrix 'I':

(166)

An alternate but equivalent derivation of the approximation of A(t,y) is given in Ap-

pendix E. This alternate derivation shows that the approximation A is a real matrix, even

though the matrices 'P and A are complex.

Although an approximation for the state equations has been found,

=• ky + Bu (167)

an approximation of the viscoelastic damping forces is still needed. A performance index

similar to one used in Chapters II and III, Eq (15) will be used in this chapter also, so in

order to weight the viscoelastic forces, an appropriate representation will be found.

As in the previous two chapters, again let v(t) represent the viscoelastic damping

forces. Before attempting to approximate these forces, the position vector and its fractional
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derivative will be expressed in terms of a vector of modal coordinates 7(t). The position

can be expressed as a product of the eigenvalue matrix and the vector of modal coordinates:

x(t) = 'Pq(t) (7 = %P-'x) (168)

Taking the time derivatives of both sides yields an expression for velocity:

i(t) = qfi(t) (i = 4- k) (169)

The generalized derivative of the modal coordinate vector is just the eigenvalue matrix

raised to the order of the deri,,ative (neglecting the algebraic response):

D',q(t) = 'PAar(t) (170)

In particular, the first derivative of the modal vector is the eigenvalue matrix times the

modal vector:
4t(t) = *Ail(t) (,q = q'A-Iij) (171)

From Eqs (170) and (171), it is appare..'. that

Dei(i) = %PA'i(t) (172)

Taking the a order derivative of both sides of Eqs (168) and (169) and applying

Eqs (170) and (172) yields expressions for the a-order derivatives of position and velocity:

DWx(t) = WI'Aqt(t) (173)

D-k(t) = TAail(t) (174)

Recalling Eq (171), and also Eq (169), the a-order derivative of position can be written in

terms of velocity:

Dax(t) = IPA- (A- 1i1(t)) (175)

= IRA"- (qr-lk(t)) (176)

The relations given by Eqs (173), (174), and (176) will be used in the time domain formu-

lation of viscoelastic forces.
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In the Laplace domain, the viscoelastic forces are given by the second term in

Eq (160):

v(S) = cGo + GIs*bT()
1 + bsa

Multiplying both sides by (1 + bs*) and neglecting the algebraic portion of the fractional

derivative once again, this equation can be written in the time domain:

(1 + bD')v(t) = C(Go + G1DO)b Tx(t)

= GoCb ,Tx(t) + G 1Cb TDax(t)

Substituting in Eq (176) yields the following expression:

(1 + bDa)v(t) = GoCb Tx(t) + GiCb T4APA --lIi (177)

It is desired that the time domain representation of the viscoelastic forces v(t) be linear

in the state y and the matrix of viscoelastic parameters C, as was the case in Chapters II

and III. So the form of v(t) that will be sought is the same as that in the previous two

chapters,

v(t) = c4ý { } y (178)

where 4 is a matrix to be determined. The a-derivative of Eq (178) will be shown to be

linear in the state also. First the a-derivative of v(t) will be expressed in terms of the

modal vector q(t) by taking the a-derivative of Eq (178) and using Eqs (173) and (174)

to express the a-derivatives of position and velocity in tems of the modal vector:

D~v(t) = OP = C 4 I }

The definition of the modal vector is used to bring position and velocity back into the

expression for Dav(t):

D~v(t) = C4 { ::: -:x}A
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So the a-derivative of v(t) is linear with respect to the state y:

D 'v (t) = O kI =/*% -10 1 C '6 * A 10y0 41,A N -I ] 0 %A *T- I

Multiplying this last equation by the model coefficient b and adding Eq (178) gives an

alternate expression for the left hand side of Eq (177):%PO 41_ 0
(1 + bD°)v(t) = C46y + b6 0 [IACIr1 y (179)

Applying the distributive property,

(1 + bD*)v(t) = -I-b y (180)
([ 0 1 0 (A0-1

The addition of the two composite matrices can be written as one composite matrix:

(1 + bDa)v(t) = Clý [ + b*AO"I 0  y (181)0 1 + bFA O - I

Setting the right hand sides of Eu (177) and (181) equal will help in finding an expression

for the matrix 4k:

C I + b*AI'A-P0 y = GoCbvTx + GiCbvTPA-I-
0 1 + b %FA a - I

= [GoCb T GjCbVT'AG-'4-I ] y
Hence, for general y,

C [+I '0 ] CbvT [Go G A] (182)
0 1 + bq'A 

[- 7
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Post-multiplying this equation by the inverse of the last matrix on the left-hand side,

[(I-bIA•l-l)- 0] (183)

0 (I + b'PA -4'-)- I

yields an expression for the matrix product CA:

C = CbVT [ G0 (I+b*A -l)-1y -] (184)

If one pre-multiplies this expression by the inverse of C, the matrix $ can be expressed

explicitly. However, it always appears in the following derivation as part of the product

CC. Also, since the eigenvalue and eigenvector matrices depend on the value of the

viscoelastic coefficients, leaving $ expressed as part of the product C0 emphasizes that

the two cannot be separated in this case.

Now that an expression has been found for the matrix product C4, the damping

forces can be weighted in the performance index:

f t~iT 1±

J = ' (y Qy + UTRu + vTSv)dt (15)

Using the relation in Eq (178) for the damping forces v(t) yields a performance index like

the one in Section 2.2.1:

Sj'I [yT(Q + $TCSC ,)y + urRuldt (38)

Defining a new state weighting matrix,

Q = (Q + •,TCSCI,)

the performance index has a form identical to Eq (7) of Section 2.1:

( 1 1 TI T

-(y Qy + uTRu)dt (185)
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Now that expressions have been found for the performance index, the equations

of motion, and the passive damping, the simultaneous design problem of active vibration

control and passive viscoelastic damping can be solved. The problem is to find the damping

coefficients and active feedback gains that

minmie:J =I ,1 TA Tminimize: J = 2 (yTQy+ u Ru)dt (185)

subject to: k = Ay + Bu (167)

v = CAy (178)

This resembles the standard LQR problem, which is solved by

u = -R-lBTPy (11)

and results in a value of the performance index given by

J = 1-YO PYo (41)

where P satisfies
PA+ TP PBR-lBTp+4=0

However, the performance index J has not yet been minimized with respect to the damping

coefficients since the matrix P is a function of the unknown damping coefficient matrix

C. To minimize with respect to the damping coefficients, one can either specify the initial

conditions Yo or minimize the average of the performance index J or the maximum value

of the performance index J over the unit ball, 11yo11 = 1. Since solutions independent

of initial conditions are preferred, only the latter two techniques are considered in this

chapter. The techniques follow the same algorithms as those in Sections 2.2.2 and 2.2.3.

However, in computing 4, the matrix C0 is computed using Eq (184). The matrix , is

computed using Eq (166).

The next section will demonstrate that the solution procedure is valid v- en the

order of the fractional derivative is a = 1. That is, when it reduces to the case of viscous

damping.
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Figure 8. Two DOF Viscous System

4.3 Validation of Techniques for Viscous Case

This section is a verification of the algorithms and computer programs that imple-

ment the solution techniques presented in the previous section. A FORTRAN program that

is a modification of the one written by Devereaux [11] computes the eigenvalues and eigen-

vectors and passes them to a MATLAB routine which makes the necessary calculations to

minimize the performance index. If the programs return the same dashpot constants and

feedback gains for viscous damping as those calculated using the techniques developed in

Chapter II, there is a high degree of confidence that the results obtained for viscoelastic

damping will be valid. The fractional derivative model reduces to that of a viscous damper

if the order of the derivative on strain is one:

G0 =0 a=1

G,=1 b=0

Although G, is not required to be equal to one for the four parameter model to reduce

to that of a viscous damper, it is set equal to one here so that the resulting equations of

motion are identical to those in Chapter II. In this case, the technique described in the

previous section ought to return the same parameters as the technique for viscous dampers

given in Section 2.2.2. Damping parameters (or dashpot constants) were computed using

both techniques for a single degree of freedom system, a two degree of freedom system, and

a fourteen degree of freedom system. The single degree of freedom system used is the one

described by Eqs (64) and (65). The damping parameters obtained using the min IIP112

solution procedures (c2) are identical, as shown in Table 16. The damping parameters

obtained using the rain (trace P) solution procedures (ct,) are essentially equal also.

76



The two degree of freedom system is shown in Figure 8. The first order system of
equations is

0 0 1 0 0 0
0 00 l 0l0o

-20 10 0 0 -1 0 U2
10 -10 0 0 0 -1

0 0001

+ [0: -0 J3P01
-11 0 C2 0 0 1 -1

0 1

- Ay + Bu + BC46y

The weighting matrices were chosen to be

20 -10 0 0

-10 10 0 0
R = 1 S =0.51 (186)

0 010

0 001

As seen in Table 16, the damping parameters for both techniques were identical for both
the min IIPIi2 and min (trace P) solution procedures.

The fourteen degree of freedom system is the same as in Section 2.2.4.3. Table 16
shows that the damping parameters obtained for this system for both techniques are in

excellent agreement.

So by applying both the minimization of the average performance index (c,,) and
the minimization of the maximum value of the performance index (c2) techniques from
Sections 2.2.2 and 4.2, it has been shown that the techniques of Section 4.2 are equivalent
to those of Section 2.2.2 for the case of viscous damping.
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Table 16. Viscous vs Fractional Derviative

Cl C2  C3  C4  C5

SDOF ctr vis .8869
fv .8872

c2  vis .4703
fv .4703

2DOF ct, vis 1.1330 1.0378
fv 1.1330 1.0378

C2  vis 1.0155 1.0155
fv 1.0155 1.0155

14DOF ct,, vis 54.3826 35.4502 38.4443 42.1846 46.8419
fv 54.3825 35.4503 38.4458 42.1846 46.8414

c2  vis 76.1842 17.5549 28.5870 34.2785 45.5261
fv 76.1846 17.5585 28.5835 34.2784 45.5242

Vis = Viscous

fv = fractional derivative with a = 1

4.4 Transition from Viscous to Viscoelastic

The last section verified that the solution techniques derived in this chapter for

fractional order systems are valid for the case of viscous damping. This section will show

that the viscoelastic damping parameters (the diagonal elements of C) are smooth functions

of the viscoelastic parameters Go, a, and b. Hence, it can be inferred that the solution

technique for fractional order systems is valid for all values of a from a = 0 to a = 1.

First, a will be varied incremently from a = 1 to a = 0, while keeping Go = 0 and

b = 0. This is equivalent to varying the viscoelastic modulus G(s) from pure viscous to

pure elastic.

The two degree of freedom system of the previous section (Figure 8 and Eqs (186)

and (186)) will be used in the calculations. Figure 9 starts with the damping parameters

(c,) for the pure viscous model (a = 1, Go = 0, b = 0):

G(s) = 7.3s

The reasons for choosing G, = 7.3 will become apparent later. As a is decreased incre-

mentally down to zero, Figure 9 shows the resulting damping coefficients for both solution

techniques, min IIPI12 and min trace(P). Figure 9 shows that the transition from pure

viscous to pure elastic (a = 0)

G(s) = 7.3
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is smooth within the resolution of the data and monotonically decreasing.

Next, Go and b are varied. The end result will be the model which will be used in

the example problem in the following section. Hence, the fractional order a will be set

to a = 4/7, and Go will be increased from 0 to 1. The parameter b will be increased to

0.0008. Thus, Figure 10 shows that the transition from the viscoelastic modulus

G(s) = 7.3S4/7

to the viscoelastic modulus
1 + 7.3S4/7

G() = 1 + .0008s4/7

is also smooth within the resolution of the data. Eq (187) is based on a model for 3M-467

adhesive at 750 F, a viscoelastic material used for damping [3:126]. The constants Go,
GI, and b have the same value as the actual model, but 4/7 is an approximation for the

order of the fractional derivatives on stress and strain. Reference [3] gives the order of the

derivatives on stress and strain as .51 and .56 respectively. Since 4/7 ; .57, a = 4/7 is

a good approximation for order of the fractional derivative on strain, whose coefficient is

four orders of magnitude greater than the fractional derivative on stress. Using a lower

order fraction simplifies the calculation of the eigenvectors and eigenvalues.

4.5 Example Problem - Fourteen DOF System

In this section, the fractional order solution technique will be applied to the viscoelas-

tically damped planar aluminum truss of the previous chapter (Figure 5). The viscoelasti'

material, 3M-467 adhesive, was modeled with the four parameter model given by Eq (187).

The modulus plot of G(s) is shown in Figure 11, where the real part is plotted as G' and

the imaginary part as G". The vertical lines in the graph indicate the lowest and highest

frequencies, and show that the structure's natural frequencies lie well within the transition

region. The state weighting matrix Q was chosen such that yTQy equals the total me-

chanical energy in the system, while the weightings on active control and passive damping

were chosen to be

R = 0.11, S = 10`I

The solutions were computed using the algorithms given in Section 4.2 and Sec-

tion 2.2.2. The eigenvectors and eigenvalues of the system for a given set of damping
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Minimum 1IP112 Solution

0.16 C 1 ,C 2 *

0.12 *

0.08
C

0.04

0*

-0.04 --- I I

1 0.8 0.6 0.4 0.2 0

Minimum trace(P) Solution
II I I

0.16 C, *
C2 o

*

0.12 *

0

0.08
c

0.04

0 * * * **

-0.04 0 0

1 0.8 0.6 0.4 0.2 0

Figure 9. Two DOF Example - Transition From Pure Viscous to Pure Elastic
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Minimum IIP112 SolUtion
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Figure 10. Example - Transition to Full Model
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Figure 11. Viscoelastic Modulus - G= 7.3, b = .0008

parameters C were computed by a FORTRAN program that used the algorithm devel-

oped by Devereaux (see Reference [11]). The eigenvectors and eigenvalues were passed to

a MATLAB routine which computed the approximate state matrix, the appropriate gains

for that state matrix, and the resulting value of IIP12 or trace(P), depending on which

one was being minimized. A new set of damping coefficients was then selected using the

MATLAB program FMINS, and the new eigenvalues and eigenvectors computed. The

iteration continued until convergence occurred.

The values of the resulting damping parameters (c,) for the two solution procedures,

mrin IIPI 2 and min (trace P), are shown in Table 17. The system damping ratios with and

without active control are included as well. The active control gains were computed using

Eq (11) and are given in Appendix F.

Since the properties of viscoelastic materials are temperature dependent, it is con-

ceivable that a drastic change in temperature could result in a rather drastic change in

properties. Assume this has occurred, and the modulus G(s) is now given by

G(s) = 1 + 730,94/7

1 + .08S4/

The real part of the modulus is plotted as G' in Figure 12, while the imaginary part is

plotted as G". Recomputing the viscoelastic parameters for this case produces the results

shown in Table 18. Even though the natural frequencies are now very near the glassy
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Table 17. Fractional Viscoelastic with G,= 7.3, b = .0008
min trace P min IIPI 12

cl 4.2782 3.6768
C2  3.9100 4.4106
C3  4.2057 5.8892
C4 5.2116 6.0427
c_ 1 6.0598 6.5551

- Passive only j .0003 to .0080 .0004 to .0092
- Complete Solution .0041 to .0340 .0044 to .0341
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Figure 12. Viscoelastic Modulus Plot - G1 = 730, b = .08

Table 18. Fractional Viscoelastic with G, = 730, b = .08

rain trace P mrin lIP12
cl 0.0563 0.0085
C2 0.0576 0.0001
C3 0.0722 0.1592
C4 0.0661 0.0497

C5  0.1048 0.1194

-Passive only .0002 to .0029 .0001 to .0036
- Complete Solution .0023 to .0340 .0025 to .0340
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region, the solution techniques can still be used. However, damping relies more heavily on

active control. The active control gains are given in Appendix F.

The results above indicate that the viscoelastic material must be carefully chosen

such that the natural frequencies of the problem structural modes lie in the transition

region for significant viscoelastic damping to occur. This is not a concern with viscous

dampers because they have no high and low frequency plateaus.

4.6 Summary

This chapter presents two new design techniques to determine optimal blending of

passive viscoelastic damping and active vibration control. The techniques are iterative in

nature, and are based on a fractional order derivative viscoelastic model and on modified

versions of the standard linear quadratic regulator performance index of optimal control

theory, given by Eq (7).

The performance index, Eq (15), treats passive damping as a separate control force,

which results in an additional energy term in the performance index. By neglecting the

algebraic modes due to the viscoelastic dampers, two of the solution techniques developed

in Chapter II can be applied to the viscoelastically damped structure: the minimization of

the average value of the performance index and the minimization of the maximum value of

the performance index. These solution techniques are useful when the viscoelastic material

is well modelled by a four parameter fractional order model.
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V. Conclusions and Recommendations

The new design techniques presented in this dissertation provide design engineers

with the ability to determine complementary feedback gains and passive damping param-

eters independent of initial conditions and the ability to handle viscoelastic dampers when

determining the optimum blending of active vibration control and passive structural damp-

ing. In deriving new design techniques to determine optimal blending of passive structural

damping and active vibration control, the treatment of passive structural damping forces

in this dissertation is unique. Usually passive structural damping forces are just included

as part of the state, but here they are weighted separately from the state in the linear

quadratic regulator (LQR) performance index. The passive damping forces are treated as

co-equals to the active control forces, and are weighted in a similar manner. The modifi-

cation to the performance index is minor, but allows structural damping to be treated as

a control parameter in LQR theory. Viewing structural damping as an LQR parameter

increases the usefulness of LQR theory by enabling the design of complementary feedback

gains and passive damping parameters. This reduces the active control effort needed to

meet specifications, allowing the design engineer to take full advantage of each ounce of

damping material. It also allows the design engineer to avoid implementing excess damping

that inadvertently increases response times.

In addition, the techniques developed in this dissertation enable the design engineer

to select complementary feedback gains and passive damping parameters that are indepen-

dent of initial conditions. Usually in a problem dealing with active and passive control,

initial conditions are set before working the problem. This restriction was not used in this

dissertation, so the solution techniques presented here lead to designs that are more robust

with respect to initial conditions.

Another restriction relaxed in this dissertation is related to the structural damping.

In control problems, structural damping is often approximated by viscous damping, since

other types of damping lead to complicated equations of motion. This dissertation develops

the techniques for viscous damping, but extends the results to the more realistic case of

viscoelastic damping.

Three techniques were developed for the viscous case - one closed form and two

iterative. The closed form solution is a least squares solution. One iterative technique

minimizes the maximum value of the proposed cost functional with respect to the ini-

tial state, while the other minimizes the average value of the proposed cost functional.
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Both techniques yielded similar performance relative to each other, and much improved

performance relative to a system with no passive damping.

Three similar techniques were also developed for viscoelasticity modelled with a clas-

sic model using integer order derivatives on stress and strain. The closed form solution

proved to be much cheaper computationally than the iterative techniques, while giving

similar performance.

The classic viscoelastic approach can be rather difficult to implement for large struc-

tures as the order of the state space equations increases dramatically with higher order

derivatives on stress and strain. The order of the state space equations was kept low in

the approach developed for the fractional derivative viscoelastic model. Another benefit of

using the fractional derivative model is that it is often a more accurate description of the

materials behavior. Two iterative techniques, similar to those for the viscous case, were

developed for this case. A dosed form solution was not possible due to the nature of the

problem.

All of the techniques derived in this dissertation are applicable to structures that can

be modelled with finite elements. The techniques are useful in cases where the baseline

structure is well-defined and the design engineer wishes to use a combination of active

and passive vibration suppression. If the damping is adequately represented by a viscous

model, then the corresponding solution techniques should be used. The Frobenius norm

solution gives a quick, rough-cut answer, and is adequate for many applications. If a better

performance is required, the minimization of the average value of the performance index

is recommended. It will tend to give better response times and takes less time to com-

pute. The minimization of the maximum value of the performance index is recommended

only if the design engineer is concerned that the minimization of the average value of

the performance index may yield high values of the performance index for certain initial

conditions.

If the damping is to be modelled with a classical viscoelastic model, the design

engineer will use the Frobenius norm solution. If the model only has first derivatives on

stress and strain, the design engineer may want to refine his design by minimizing the

maximum value of the performance index. This method is recommended over minimizing

the maximum value of the performance index for the same reasons as in the viscous case.

Also for the same reasons, minimizing the average value of the performance index

is recommended for the case in which viscoelastic damping is modelled using a fractional
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derivative model. A four parameter fractional derivative model is recommended over a

classical model for the reasons cited above: it keeps the order of the state space equations

low and it is often a more accurate model.

For situations in which the design engineer wishes to weight passive damping as a

one-time cost, two solution techniques were developed for structures with viscous damping.

It would be a straightforward task to extend these solution techniques for viscoelastic

damping. As in the case in which passive damping is weighted as an additional control force,

minimizing the average value of the performance index is recommended over minimizing

the maximum value since it will give better performance.

The weighting matrices in both types of performance indices are chosen by the design

engineer based on the relative importance of passive damping, active vibration control,

and required damping ratios. The weighting matrices may need to be adjusted to attain

a solution that is acceptable to the design engineer. Two general guidelines in choosing

the weighting matrices are that the diagonal elements of the weighting matrices for passive

damping and active control be larger than the diagonal elements of the weighting matrix

for the state, and that the diagonal elements of the weighting matrix for passive damping

be less than or equal to those for active control. However, these guidelines do not have to

be followed if the design engineer has a reason for choosing the weightings differently.

The solution techniques in this dissertation are limited to structures in which the

structural damping is either viscous or viscoelastic. To use the solution techniques for

viscoelastic damping, the viscoelastic dampers must be constructed such that only one

component of strain dissipates the energy. Expanding the techniques to different types of

dampers, such as viscoelastic dampers in which two components of strain dissipate energy,

is an area for further research.

Another limitation is in the numerical implementation of the solution techniques.

As noted in the summary of Chapter III, if the order of the finite element model is too

large, computational difficulties may arise. This is especially critical in the case where

viscoelasticity is modelled using integer order derivatives, since the order of the state

equations are at least three times larger than the order of the finite element matrices

defining the structure. The numerical stability for problems of more than fourteen degrees

of freedom was not investigated.

Applying the solution techniques to larger scale problems would be an area for further

research. Structures other than the spring-mass-damper systems and trusses in the example
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problems could also be considered. Other structures might be basic structures, such as

plates and beams, and also more complex structures that are combinations of these simpler

structures. Another area for further work would be to experimentally verify the solution

techniques using some of these structures; the work presented in this dissertation is all

theoretical.

Since this is an engineering dissertation, an engineering approach was taken in mini-

mizing the cost functional subject to the constraints on the passive damping force (and on

the active force when viscoelastic damping was modelled with a classical model). Follow-

ing an exact analytic approach using vector space methods would be an opportunity for

further research.

The two greatest contributions of this dissertation are the ability to determine com-

plementary feedback gains and passive damping parameters independent of initial condi-

tions and the ability to handle viscoelastic dampers. These two contributions combine

to show that viscoelastic damping can be optimized in conjunction with active feedback

control to provide better vibration reduction.
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Appendix A. Calculation of Damping Coefficients

The derivation of the solution to the diagonal C that minimizes the Frobenius norm

of Eq (36) is given in this appendix. Although the development is for vectors and matrices

of order 4, it can be easily extended to vectors and matrices of order n.

Let X be the space of real valued vectors with four elements and let Y be the space

of 4x4 real valued matrices. Define an operator A : X -+ Y by

xr 0 0 0

0 X2  0 0y =A(x)=
0 0 x3  0

0 00 X4

where x E X. It is easily verified that A(xl + ax 2)= A(xi) + aA(X2 ) for any scalar a, so

A is linear.

Given y E Y, the vector x is sought that minimizes the Frobenius norm IlY - AxIVr,

Hence, a solution to the following expression is sought:

min Ily - AxjjF (188)XC-x

Define a functional on Y x Y by

4

(y,z) = yij z,, V y,z E Y (189)
Qj=l

Since this functional satisfies the four requirements of a real inner product:

(y,z) = (z,y)

(Y1 + Y2, z) = (y 1, z) + (Y2, z)

(Ay, z)= A(y,z)

(y, y) 0, with equality iff y = 0
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define the functional in Eq (189) to be the inner product on Y. Then the norm on Y is

given by

IIYI-= (yy)i[2 2 ]

Notice that this is the Frobenius norm for 4x4 matrices.

The conjugate operator A* : Y -+ X is found from the relationship

(x, A*y)x = (Ax, y)y

The subscripts X and Y denote the spaces in which the inner product is taken. Since

4 4

(Ax, y)y = E (Ax)ijyij = -zy,, = (x,A*y)x
i -1=1

the conjugate operator is given by

Ky - Y22

Y44

The solution which yields the smallest error in the Frobenius norm, Eq (188), is given by

(A*A)-iA*y if (A'A)-l exists [21:160]. Find A'A:

0 02 0 0 X,

A*Ax = A* 0 X2 0 0 X2 x

0 0 X3 0 j3

0 0 0 X4 X4

So A*A is the identity operator and its inverse is also the identity operator. Hence the

solution that minimizes the Frobenius norm is

x= A*y

In other words, x is the diagonal of y.
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Using the same procedure outlined above, it can be shown that the diagonal C that

minimizes the Frobenius norm iiCO - WIIr is given by

c = (A*A)-'A*W = !

where c is a vector containing the m elements of the diagonal of C, and 4 and W are

m x n matrices. In the case of Eq (35),

W = -S-'BVTP

The diagonal elements of the positive semi-definite diagonal matrix C that minimizes

the Frobenius norm iiCJ - WIIF are

C= = max 4::= , 0 (37)

The last sentence of the following theorem will be used to prove that C as defined

above minimizes the norm I1C4 - WIIF over the set of positive semi-definite diagonal

matrices:

Theorem [21:69]. Let x be a vector in a Hilbert space H and let K be a closed convex

subset of H. Then there is a unique vector ko E K such that

lIx - k0 1l : Jjx - kl

for all k E K. Furthermore, a necessary and sufficient condition that ko be the unique

minimizing vector is that (x - k0, k - ko) < 0 for all k E K.

Let H be the space of all m x n matrices. The following functional satisfies the four

requirements of an inner product and will be defined as the inner product on H:

M it

(y,z) =E yijzij V y,z E H
i=1 j=1
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Let QZ = {E E Rmr'nIE is positive semi-definite diagonal} and let

K = {klk = E* where E E fl}. Since Q is convex, K is convex also (0 < a < 1):

aEI + (0 - a)E 2 E fl

therefore,

[aEI + (1 - a)E21* = aE1 l + (1 - a)E24 E K

Since K is equal to its closure, it is closed.

The inner product of W - CA with Ek - C4 is

(W - A,@-C ) = CE i 2.C. EW j-i ii••, ,,••4,W

i=1-- =1 == j-=1 -=1

For each i such that E=l tiWi, > 0, the corresponding term in the summation above is

zero:

SEj"=In i;- WJ2 n 6,,w,., Wij 4ii. W 0

j~ 3)j=1 I S-)j~ • I =1=1 I "=

For each i such that F-•=l $djWj, •< 0, the corresponding term in the summation over i in

the inner product is negative for all E:

n n

Ei dZtij ,ij • 0 for E ZbiWi, •5 0 and E E K
1=1 j=1

Hence, the summation over i in the inner product reduces to a sum of zeros and negative

terms, and is therefore less than (or equal to) zero for all E E K. This proves that C

as defined in Eq (37) minimizes the Frobenius norm 110C - WIIF over the set of positive

semi-definite diagonal matrices.

The method of calculating the damping coefficients presented here is useful in both

Section 2.2.1 and Section 3.2.
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Appendix B. The Value of the Cost Functional in Termns of the Initial State

This appendix contains the derivation of a form of the cost functional in terms of the

initial state, which is the form given in Eq (41). Define a time dependent function J(t) as

J(t) 2 (yTQy + uT Ru + vTSv)dt (190)

Assume J(t) is of the form

J(t) = c - yTGy

where c is an unknown constant and G is an unknown matrix. Then the derivative of J(t)

with respect to time is

i(t) = -'TGy - yT -y - yTGk (191)

But from the definition of J(t) and Eqs (23) and (11) in Chapter II,

J(t) = yTQy dr (192)

where Q = Q - PBR-lBTp + 4TTCTSC4P. Taking the time derivative of Eq (192) gives

J(t) = yTQy (193)

Now •, Ay where A = A - BR-.BTp + BC4'. The objective of this dissertation is

vibration suppression, so P and C have been chosen such that A is stable. Combining Eqs

(191) and (193) gives

Ty = _YTGy yTdy _ yT.-y (194)

Now G = 0 since 4 is constant, so Eq (194) becomes a Lyapunov equation in G:

AT G + GA + -= 0 (195)

In order to express J(t) in terms of the initial state, Yo, the state y is first expressed in

terms of the initial state:

y = eA(t-tO)yo
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Then the cost functional can be written as

J(t) = c - yTeA?(t-O)Ge'(t-°)yO

Since the initial value of the cost functional is zero, J(to) = 0, the constant c is c = yTGy0 .

The the cost functional J given in Eq (15) can be expressed as J(t!). As t1 approaches

infinity, the cost functional can be expressed as

J = lim J(t)

Since A is stable, the limit exists. Hence, the cost functional is

J = lir J(t) = y0TGy 0  (196)

where G is the solution of Eq (195). Comparing Eqs (40) and (195), it becomes dear that

G = P. Therefore Eq (196) is equivalent to Eq (41).

A similar development can also be found in Reference [1].
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Appendix C. Solving the Non-Symmetric Quadratic Matrix Equation

In this appendix, the method for solving Eqs (108) and (113) is described. The

method will be demonstrated using Eq (108):

Q + PA + ATp - PBlR-'BTIAPfrI 2 - PBS-lB.Tp =0 (108)

This equation is quadratic in P, but is not solvable by any of the standard MATLAB

routines. Newton-Raphson is a standard technique and it is employed as follows: First the

left hand side of Eq (108) is defined as a function of P:

Q(P) = Q + PA + ATp - PBIR-'BTIAPFI,12 - PBVS-BVTp

The goal is to find P such that Q(P)=0. The function Q(P) is approximated by

Q(P) = Q(Po)+DQ[Po](P - Po)+o(IIP - Poll)

where the operator DQ[PoJ represents the Fr~chet derivative of Q at Po and o(P) repre-

sents terms that are at least quadratic in (lIP - Poll). Let H = P - Po.

Since Q is a function of P,

DQ[PoJ(H) = dQ(Po + tH)l.= 0  (197)

Carrying out the calculation,

DQ[Po](H) = HA + ATH - HBlR-1 BTIAPofI1 2 - PoBR-1 BTIHFIl2

-HBS- 1 B,,Tp 0 - PoB'S-1BTH

This may not look much better than Q(P), but at least it is linear in H. The equation to

solve for H is

DQ[Po](H) + Q(Po) = 0 (198)

Note that this equation is similar to a Lyapunov equation, although some of the terms do

not have H on the left or right, but in the middle. To get around this difficulty, note that

f, is an identity matrix with the bottom third diagonal all zeros. Therefore approximate

95



HI, and HI 12 by H where appropriate in DQ[Po](H). This results in the simplification,

DQ[Po](H) = HA + ATH - HBIR-1 BTIAPOfrII2 - PoBTIAH

-HBS-'B T p0 - PoBS-lB TH

With this approximation, Eq (198) becomes a Lyapunov equation, easily solved by the

simple MATLAB routine LYAP. The initial guess, Po, is found by setting IA, Ir, and 112

equal to identity in Eq (108) and solving the resulting algebraic Riccati equation. The

iteration scheme is

DQ[Pj](H,) + Q(P), = 0

Pj+j = Pi + Hi

Convergence occurs when Q(P) is sufficiently small. The sum of the absolute values of the

elements of Q(P) was used as a measure of "smallness".

The method presented here for solving the non-symmetric quadratic matrix equation

can be used to solve both Eq (108) of Section 3.2 and Eq (113) of Section 3.2.1.
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Appendix D. Error Analysis

In this appendix, the error between the approximation Ay and the operation A(t, y)

is examined in detail. The operator A(t, y) is defined by Eqs (163) and (164) in Chapter IV.

The approximate state matrix is defined by Eq (166):

A = I•A-P (166)

The impulse response to Eq (160), represented by x(t), will be used to illustrate the

error due to the approximation of A(t,y). From Reference [31, the impulse response can

be expressed in terms of an integral that decays algebraically and a sum of decaying

exponentials:

1 m'm 1 T{1.}(1 + bAr')° (
x(t) = 7-IM r X(re-")e-'tdr = n ]bje (199)

where

N ,{.}(1 +b e'a
mr/ei/ - j

a = order of fractional derivative (a = q/m)

m = denominator of a

Aj = j'h eigenvalue associated with the expanded

equations of motion (see Reference [3])

,j = eigenvector associated with the expanded

equations of motion (see Reference [3])

n = twice the length of the vector of displacements

N = total number of eigenvalues associated with the expanded

equations of motion (see Reference [3])

b = viscoelastic parameter (see Eq (156))

mi = modal constant

{1.} = column vector of ones

The approximate state matrix is calculated using the eigenvalues and exponential

modes of the structure, so the error due to using the approximate state matrix is the
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integral term of the impulse response:

xE(t) = x(t) - *(t) = lIln [J X(re-f)e-"dr] (200)

The error will be shown to be real and continuous, and its asymptotic behavior for

small and large time examined.

In a first glance at the behavior of the error, it appears to be singular at t = 0.

But for real structures, the singular components cancel each other. Churchill's theorem

on the existence of the inverse transform will be used to prove that the response is real,

continuous, and causal [3:88]. Then it will follow that the error is real and continuous since

it is the difference between two continuous functions.

Before applying the theorem, it will be shown that the Laplace transform does,

indeed, satisfy the transformed equations as they appear in Eq (160):

82 Mx(s) + G(s)Kvx(s) + Kx(s) + bu(s) = 0 (160)

The Laplace transform of the impulse response x(t) (Eq (199)) for which -bu(t) = 6(t) is

i(s) [3:921: N + '{.) 1 -- 1'E =- (201)

j=1 m,(81 fr-A)

To show that X(s) does indeed satisfy the transformed equations of motion, the equa-

tions of motion will be posed in expanded form. The first step is to clear the denominator

of G(s): Go+Gis-

1 + bsa

Hence Eq (160) becomes

82(1 + bs*)Mx(s) + (Go + Gls*)Kvx(a) + (1 + bs * )Kx(s) = -(1 + bs*)bu(S) (202)

Rearranging terms yields

[M(82 + bs 2+a) + (GoK, + K) + (G1K, + bK)s-] x(a) = -(1 + bsa)bu(s) (203)
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The left hand side of this equation can be written in terms of summations:i -
M Z c•i/m + ) KjjP] x(s) = -(1 + bs*)bu(s) (204)

L j=0 j=0

where J = 2q + m and c, and K, are zero where appropriate. Letting Aj = Mcj + K,

simplifies Eq (204) even further:

EjAjsj/mx(S) = -(1 + b.a)bu(s) (205)
j=0

Hence, the equations of motion can now be posed in terms of two real, square, symmetric

matrices:

0 ....... 0 A, 8 x(S)

: A, A,�-.�x1 A(S)
1i/m

o A, ... A 3  A 2  sax(S)

Aj A.-I ... A 2  A, x(s)

0 ... 0 -A, 0 aI'x(S) 0

-A, -A,_. 0 o a-•x(.S)

+ 0 :

-Aj -A,.. ... -A 2  0 a -x(s) 0

0 ... ... 0 A0  x(a) -(1 + bsa)bu(s)

This equation can be expressed in more compact notation:

s/1 'MI(s) + K*(s) = -fi(s) (206)

The orthogonal transform matrix (or modal matrix) $ which simultaneously diag-

onalizes the expanded mass and stiffness matrices ( M and K ) is constructed from the

eigenvectors associated with the eigenvalue problem for the expanded equations of motion:

= 0 (207)
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The expanded displacement vector can be expressed in terms of the modal matrix and a

set of modal coordinates a($):

i(s) = 4a(s) (208)

Premultiplying Eq (206) by 42T and substituting in Eq (208) produces the decoupled

expanded equations of motion [24:159] [3:68]:

3l/mjTMia(s) + 4 T Kfa(s) =-0 TUi(.s) (209)

To show the decoupled nature explicitly, the equations of motion are written in terms

of the modal constants m.. and k. where

M. = 0. M'.. (210)

k. = 0.Ko. (211)

Hence, Eq (209) becomes

s II" M. a(s) + k,. a(s) = -Tfi(.s) (212)

J J

Premultiplying this equation by the matrix diag(1/m.) yields

sllmla(s) + k./m. a(s) --- - [ /me4 ]Tu('-) (213)

Premultiplying Eq (207) by tkn and recalling Eqs (210) and (211) results in an equa-

tion relating the eigenvalues to their corresponding modal constants:

Anmn + kn = 0 (214)
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Hence, Eq (213) can be rewritten in terms of the eigenvalues:

hl/mla(s) - f . a(s) = - l/re j T fi(s) (215)

The individual elements of a(s) look like modal participation factors - in fact, they

are. The individual elements of a(s) are of the form:

,bTfl(s)
a m,-(8l/m - A)

From the form of i(s) and 1k,

a•)(S) a Ion

x(s) 'O

it follows that

ii (s) = (1 + bsa)OT bu(s) (216)

The Laplace transform of the structural displacements is of the form

N

X(S) = a8)0
fl=1

or or N •bu(s)(1 + bs*)

n=1 M= (sl/m - n)

Therefore, X(s) is the transform of the impulse response to Eq (160).

Churchill's theorem on the existence of the inverse transform can now be used to

prove that the response is real, continuous, ard causal.
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Theorem [9:178]. Let f(s) be any function of the complex variable s that is analytic

and of order 0(s-k) for all s (a = z + iy) in a half plane z > xO, where k > 1; also let f(x)

be real (z > xo). Then the inversion integral off(s) along any line x = y, where y >_ xo,

converges to a real-valued function F(t) that is independent of y,

F(t) = L-'{f(s)} (-so < t < co),

whose Laplace transform is the given function f(s):

L{F(t)} = f(s) (x > xo).

Furthermore F(t) is O(e'o'), it is continuous (-oo < t < cc), and

F(t) = 0 when t < O.

The quantity I(s) is analytic in the half plane z > zo when z0 is positive and the

branch cut of 91/m is chosen to lie along the negative, real axis in the a-plane and the poles

of k(s), which occur at

a =

do not appear in the right half s-plane. (If the poles appeared in the right half s-plane,

then the viscoelastic material would be generating energy instead of dissipating energy.)

The quantity k(x) is real for x positive. The only quantities appearing in Eq (201)

that can be complex are mi, 0b1 , and Aj because (1 + bz*) and ax /m are real for x positive.

When mj, 0p,, and Aj are complex, they occur in conjugate pairs [3:89]. Hence, it follows

directly that when the terms in Eq (201) axe complex, they occur in complex conjugate

pairs and k(x) is real for x positive.

k(s) also satisfies the condition that the transform be of order O(s-k), k > 1. The

direct proof that k(s) is order s-2 for a large in the right half s-plane (i.e., putting all

the terms over a common denominator and adding them up) is long and involved, so an

indirect approach will be pursued. The transformed equations of motion as they appear

in Eq (160) will be used:

s2 Mx(s) + G(s)Kx(s) + Kx(s) + bu(s) = 0 (160)
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With Kj(s) = G(s)Kv + K, the transformed equations of motion for simultaneous, unit

impulsive loading (-bu(s) = {1.}) are

[s'M + Kt(s)] X(s) = {L.} (217)

The only terms in Kg(s), other than the constant terms, are those terms proportional to

G(a), which behaves like a constant as s -* oo. As a direct result, Eq (217) reduces to

s2MS(s) ,{1.} as a --* oo (218)

Since the elements in the mass matrix are constant, i(s) is order 3-2 for a large in the

right half s-plane.

Since i(s) satisfies the conditions of the theorem, the response (Eq (199)) is real,

continuous, and zero at initial time t = 0. It follows that the error (Eq (200)) is also

continuous, since it equals the total response minus a sum of decaying exponentials. It

also follows (from Eq (199)) that the initial value of the error is given by

"nm y''{.( + M6a"')

j=1 Mi

Before examining the short time behavior of the error, the short time behavior of

the response will be derived. The response will be shown to monotone for short time;

a Tauberian theorem will then be appled to determine the short time behavior of the

response.

The monotone nature of the response for short time can be derived by examining the

equations of motion (Eq (162) in the time domain wth the forcing term -bu(t) replaced

by the impulse function 6(t){1.}:

Mi(t) + K,,d Ge,(t - r)x(r)dr + Kx(t) = b(t){1.} (219)

Integrating this equation from 0- to t yields an expression in terms of the velocity:

Mk(t) + K,, J G,,I(t - r)x(r)dr + K j x(t) = {1.} (220)
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Now Geg(t) is a continuous function. This is evident when the Laplace transform of GeI(t)

(see Eq (159) and (161)) is expressed as a sum of two terms:

L{Grej(t)} - Gi/b + Go - Glib

a s(l + bso)

The first term is clearly the Laplace transform of a step function, while the second term

satisfies the conditions of Chuchill's theorem (where the x0 of the theorem is equal to bl/a).

Hence, as t 1 0 the integrals in Eq (220) disappear since the integrands are continuous:

lim Mi(t)= {1.}
t1o

or

lim*(t) = M-111.1
tjo

Hence, there exists a 6 > 0 for each e > 0 such that the absolute value of each element of

k(t) minus each element of M-{ 1.} is less than e whenever 0 < t < 6. Written in terms

of vectors,

- C{1.1 < i(t) -M-I {1. < f{1.} (221)

Solving for velocity,

M-1 {1.} - e{1.} < i(t) < M-{1.} + e{i.} (222)

So for the smallest E such that an element of (M-'{1.}-c{1.) or (M-'{1.}+c{1.}) equals

zero, there exists a 6 > 0 such that the elements of the velocity *(t) do not change sign

on 0 < t < 6. Therefore, each element of the response x(t) is a monotone function on the

interval 0 < t < 6.

To examine the behavior of the response for short time in more detail, the following

Tauberian theorem, slightly parapharsed from Feller, will be used. (Note that w(s) is the

Laplace transform of u(t).)

Theorem [13:446]. If U has an ultimately monotone derivative u then as s --* 0o and

t --ý 0, respectively,

W(s) 1- iff u(t) , t. (223)
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From Eq (218), the Laplace transform of the response for large s is

~jm I2{.}

It follows that the response is linear for short time:

x(t) = L'-X{(s)} - M` {1.}t when t - 0

Since the error is the response minus the exponential portion of the response, which is

known exactly, the error can be expressed as

M_1f 1} 0~i,' f1.}(l + bAtm )
xE(t) mb0•Me' when t -* 0

It is appropriate to expand the exponential terms in terms of t. To make things easier,

the vector coefficient of e•7 will be represented by cj. The vector coefficients appear in

complex conjugate pairs and the complex conjugate of ci will be assumed to be c,q./2+j.

The coefficient of t in the exponential will be expressed in terms of its real and imaginary

parts:
AX = -P1 +i-y

Adding the complex conjugate pairs and carrying out the expansions yields an expression

for the error in powers of t. Retaining only the first power of t yields

n/2 [M /2XE(t) ~ -2 E Re(c4 ) + M-ni}+2 E(pmRe(cj)+ •1.m(cj))]

j=1 ,j=1

for small time. In long form, the constant term is

n2n/2 ±~pre)R
-2 E Re(cj) = -2 E m (1 + bRe(-`)) Re -

j=1 =

which is equal to the initial value of the error, xE(0).

To examine the behavior of the error for large time, Watson's lemma will prove useful.

Watson's lemma [10:446]. Let F(r) = f(ra)rb, a > 0, b > -1. Let f(z) have a

Maclaurin expansion for IJx < 6. Let IF(r)I < Me-7 for some constants M and c as
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r --+ oo. Let f(z) be continuous for all values of x. Then

j r,-)e-rdr - aJr(ka + b + 1)
E ka+b+l

10,00k=O

as t --+ oo where at, =t

With f(x) defined as

I = :{1.}(1, + bxqe-iva)
AXe -=A,)

the quantity X(re-i/) in Eq (200) can be written as

X(re-i) = f(rl/m)

The Maclaurin expansion for f(z) is

f(r)= j- [ 1+ - + X2+e + .b-x a+

j=1 mj A, A, A

X+ ei(b +)/ e'i(f'~)/m , (be~w(q+ 2)/rn e-iw(t+ 2 )/mn)
+ +1 +2 +

for IxI < JA11, where lAd is the eigenvalue with the smallest magnitude. Let the coefficient

of xh be represented by ak:

ak = E m (e for 0< k <q
j=1 mAj AJ
j=lak= =,I -mt'Ti.~ (be, ft+ eih•'---• ork_

Then the Maclaurin expansion can be written more compactly:

00

f 1: = akXk
k=O
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Hence, the asymptotic behavior of the integral in the error is given by a summation in

terms of time t:

F(r)e-rtdr akl(k/m +1) for t - oo (224)
k0 tk/m+110 k=O

Expanding the first few terms of the summation in Eq (224) yields

F(r)e°dr ~ao ar(I + 1/m) a2r(1 + 2/m) fort -- oo

F e0  t + t+ tl+ 2/m

Now a0 can be expressed in terms of the eigenvectors 0,k and modal constants mi:

N _IpT{1.I•bj

ao = -n)
j=1 7j j

Since the eigenvectors, eigenvalues, and modal constants occur in conjugate pairs, ao is

real. Hence, the error does not have a /it term:

v(t) Irn (alr(1 + 1/M) a2r(1 +2/m) + .

W l+l/m + tl+ 2 / /"

To show that the imaginary part of a, is non-zero, a, will be computed. From the form of

ak,
N 4-,TI{.}W,. (e-l/m\'

a, = N ~ ' -
j=1 m, 3  \ /

Applying Euler's identity yields

a= _m,({A.)O2 (-os /m- isinir/m)

Hence, by the same rationale that ao is real, a, has an imaginary part:

N ifT{1.}4
Im(ai) = - sin r/m

j=1 rn,(,)
2

Since the error is asymptotic to t-(1+lI/) for large t, it does not decrease exponentially.

The rationale for ignoring the error due to the approximation is given at the end

of Section 4.1. Although the solution procedure outlined in Section 4.2 does not take
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into account the relaxation modes (i. e., the error) due to the presence of viscoelastic

dampers, the calculation of the oscillation modes does take into account the effect of the
viscoelasticity of the damping material.
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Appendix E. Alternate Method for Calculating the State Matrix

This appendix contains an alternate method of calculating the approximate state

matrix to the one given in Section 4.2. The derivation of this method makes it clear that

the approximate state matrix is real-valued.

In Section 4.2 A, is constructed using the principal value eigenvectors and eigenvalues

where A is a diagonal matrix of the eigenvalues and IF is the matrix of corresponding

eigenvectors. Then kA = 4P,. Writing A in terms of four submatrices Aj, this becomes

Al A21 ] [:4 ] [: A]L 0 (225)A2, A22 41A 4f 41A 4$ 0A

Carrying out the matrix multiplication

A 11q, + A12*A A111F + A 12 PA [ TA IPA (226)
A 21 ' + A22'1A A 21W + A 22 -A -P A2 VA--2

results in four equations. The top two will be considered first:

A114, + A1241A = IPA (227)

A11 '+ A 12fA = 'A (228)

Adding and subtracting these two equations gives

A1 1('P + T) + A 2(NPA + *'A) = ('PA + 4A) (229)

Alx(* - T) + A12(41A - %PA) = (TA - %-A) (230)

109



The quantities in brackets are either two times the real part of * (*A) or 2i times the

imaginary part of 'P (%PA). Hence, these two equations can be written as

AiRe(41) + A12Re(*A) = Re(%PA)

Ai1 Im('@) + A 12 Im(4,A) = Im(4PA)

Solving for All in each of the equations yields

A,1 = [Re(IF) - A12Re(TA)] [Re(P)]-1 = [Im(%P) - A121m(%PA)][lm(')] 1  (231)

Combining the terms containing A 12 gives

A 12 {Re('PA) tRe(F)]-' + Im(%PA) [Im()]-'} (232)

= Re(,PA) [Re(,@)]-' + Im(TA)[Im(')- 1

From this equation, it is apparent that

A12 = I(233)

which, from Eq (227), implies

All = 0 (234)

The second two equations,

A 21 * + A 22TA = T'A2  (235)

A 21T + A22-- = 47A2 (236)

result in the two equations,

AIlRe(qf) + A12Re(%PA) = Re(%PA 2) (237)

AIlm(q') + A12 Im(TA) = Im(TA2) (238)

Solving for A21 in each of the equations yields

A21 = [Re('q 2) - A 22Re(qA)] [Re(P)]- 1 = [Im(q' 2) - A22 Im(%FA)I [Im(')]-' (239)
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Hence,

A 22 {Re(%IA) [Re(•,)]-' + Im(%PA) lm(•II)]-}

= Re(TI'A 2) [Re(41)]- 1 + Im(*I!A2) [IM(%p)]- 1

(240)

Finally, solving for A22 yields an expression which is real.

A22 = {Re(%PA2) [Re(%P)]-' + Im(41A 2) [Im(q)f-'} (241)

x {ReIVA) [Re(,@)]- + Im(TA) [Im(T)]-'f -1 (242)

Substituting this expression into Eq (239) above yields A 21. Therefore, A21 is real also.

Since All and A 12 are real also, the state matrix A is also real. Since this matrix is

equivalent to the approximate state matrix derived in Section 4.2, the approximate state

matrix is also real.
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Appendix F. Feedback Matrices for the Truss Examples

This appendix contains the active gain feedback matrices for all the fourteen degree
of freedom examples in this dissertation. Each feedback matrix has dimension 4 x 28. The

gains for each chapter's examples are presented in separate sections.

F. I Chapter II Gains

This section contains the feedback matrices as computed by Eq (11) for the four

different solution techniques developed in Sections 2.2.1 and 2.2.2 for Example #3. It also
includes the feedback matrices for the two solution techniques presented in Section 2.3 for

Example #4. The matrices are on the following pages. Table 19 is the key to the solutions.

Table 19. Key to Matrix Names for Section F.1
Example Matrix Name Solution Technique
Example #3 GI min I1B1I1

G2h min IIHI12
Gt• amin trace P

IG2  Imin IIPI12
Example #4 G ve mn •L trace P + 2 TSC

G.. rain m iIPU12 + CTSc)
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G,

Columns 1 through 7

60.8854 137.2134 -75.7822 -173.6511 26.2906 -34.7551 -8.8621
69.6113 135.6511 -52.4885 14.8513 -147.8120 -106.1664 168.0596
78.5921 104.6444 18.1517 -62.9460 -22.1549 -298.9220 103.0132

235.7793 136.3770 112.7833 50.3280 72.5824 -59.3887 -143.9000

Columns 8 through 14

48.0909 -8.4912 33.3340 -2.3179 -32.7392 5.9136 7.3087
19.5168 132.7994 30.9326 -134.7725 -65.6421 -21.4194 41.8575

312.1403 -23.4110 130.7269 -71.1841 -175.1829 42.5333 20.4618
-4.5445 -170.0058 -15.7503 108.4971 24.7631 24.4720 -10.5425

Columns 15 through 21

6.1961 -1.4179 0.1507 -0.1824 1.0709 -0.2874 1.4822
-1.4142 11.4926 0.7460 3.4615 0.3602 2.7212 -0.7177
0.1534 0.7517 7.6018 -0.8572 2.7187 1.2781 1.9533

-0.1758 3.4552 -0.8656 11.9417 -0.0934 6.7203 0.9148

Columns 22 through 28

-1.6310 1.6495 -1.7135 1.0639 -1.3217 2.6922 -3.8026
5.8867 0.1494 3.8181 0.2867 3.0427 0.8136 6.3550
1.4761 1.7575 0.6129 2.9212 1.4884 6.1589 2.5689
3.1828 0.7333 3.3875 0.3460 4.1678 1.4643 6.3543
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G21=

Columns 1 through 7

62.9054 134.8581 -66.3055 -175.0679 18.3592 -26.0758 -16.5618
79.3484 144.3491 -37.5207 21.9577 -155.3707 -113.2804 163.3008
68.4578 95.8321 16.8779 -68.9060 -18.3349 -255.4717 67.5165

243.8168 145.9967 122.4900 58.4604 71.4145 -89.2929 -136.6324

Columns 8 through 14

38.2794 -4.4152 42.6332 -1.5232 -39.9349 3.4473 6.7362
-12.4108 144.4190 82.1159 -131.7938 -70.3460 -12.1800 23.5068
271.8900 0.4157 180.2037 -59.4202 -221.3717 38.4422 23.2290
-10.0895 -167.2828 -17.2681 118.7133 69.9598 23.8387 -30.7180

Columns 15 through 21

6.2410 -1.4277 0.1415 -0.1732 1.0468 -0.3986 1.5337
-1.4234 11.7814 0.7319 3.7110 0.4756 2.5659 -0.6713
0.1439 0.7369 7.6211 -0.9163 2.6754 1.2443 1.9206

-0.1663 3.7053 -0.9241 12.2309 -0.0261 6.5101 1.0204

Columns 22 through 28

-1.5967 1.5318 -1.7559 1.0256 -1.2416 2.7222 -3.8331
5.6853 0.1806 3.9373 0.3396 3.1580 0.9155 6.2907
1.5358 1.7642 0.6783 3.0228 1.3866 6.0855 2.5713
3.0823 0.7998 3.4006 0.3364 4.3195 1.5819 6.3279
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G =-

Columns 1 through 7

62.5198 136.9156 -84.9311 -173.4920 19.8862 -36.8601 5.6607
70.7117 138.3706 -63.3180 17.3930 -158.8348 -102.9273 174.5300
88.3765 113.3171 19.2687 -63.9681 -29.4842 -302.0402 109.8547

230.0153 139.5345 114.5842 54.4877 79.6198 -75.2200 -152.8309

Columns 8 through 14

53.4789 5.0294 35.8599 -9.0963 -40.5677 -0.1541 10.6292
5.0429 144.8681 20.4038 -144.3306 -55.2011 -34.8869 46.1979

318.4706 -25.8206 128.6146 -63.7649 -179.7290 34.9756 21.2320
-0.1763 -180.1297 -4.7210 111.2053 15.1257 14.5805 -9.0842

Columns 15 through 21

6.1509 -1.3413 0.1804 -0.3025 1.1789 -0.4110 1.5747
-1.3369 11.7083 0.7295 3.7868 0.3732 2.7948 -0.7119
0.1831 0.7350 7.7083 -0.8737 2.8666 1.2882 2.0999

-0.2958 3.7803 -0.8823 12.1434 0.0067 6.6483 0.9537

Columns 22 through 28

-1.4605 1.6688 -1.6170 1.1401 -1.3985 2.8010 -3.8226
5.8102 0.1104 3.7480 0.3557 3.0772 0.9515 6.3343
1.6487 1.8831 0.7459 3.1165 1.4338 6.5630 2.4971
3.2901 0.8715 3.4161 0.3831 4.0682 1.5877 6.3704
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G2 =

Columns 1 through 7

59.4241 111.0129 -66.6250 -148.7496 11.8285 -44.6229 10.5544
129.2189 166.2954 -86.3966 9.1834 -162.3572 -72.3976 144.r425
85.9633 126.1300 20.7201 -60.8535 -34.4722 -309.3312 142.6468

244.6480 166.7833 95.4493 54.6290 101.1949 -136.9265 -144.0311

Columns 8 through 14

65.7966 0.8674 22.3552 -15.4089 -36.5680 2.0923 13.4014
-59.8052 148.0188 9.7843 -137.8634 -30.7585 -80.7885 51.7748
323.0306 -52.1648 133.3272 -62.2221 -194.8828 40.4834 20.4625

26.2492 -201.3158 13.9502 82.8149 -1.5140 -13.0974 1.0109

Columns 15 through 21

6.4417 -1.3751 0.1911 -0.3405 1.1791 -0.4520 1.5320
-1.3712 11.9444 0.5470 3.8516 0.2777 2.6384 -0.7196
0.1939 0.5529 8.1370 -0.8070 2.7553 1.2321 2.0935

-0.3339 3.8460 -0.8164 12.4175 -0.0345 6.1669 0.8482

Columns 22 through 28

-1.3896 1.6949 -1.5756 1.0828 -1.3600 2.7290 -3.8698
5.3474 -0.0081 3.8167 0.2607 3.1503 0.6429 6.4370
1.9055 1.7932 0.8369 3.0411 1.4902 6.6023 2.3926
3.0848 0.6363 3.4532 0.2701 4.1371 1.3288 6.5021
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Gav~e=

Columns 1 through 7

64.1695 144.5988 -50.0861 -183.6278 17.4595 -16.5797 -57.6956
177.3899 163.9929 -69.1734 -14.5471 -200.8170 -104.2373 213.3795
74.6711 131.9043 -7.9591 -94.1001 -13.6606 -307.3552 127.4211

328.3747 171.8566 134.3263 6.8416 145.0328 -40.5235 -181.5181

Columns 8 through 14

23.6747 -34.7961 22.5202 29.2920 -17.9947 10.8837 3.2705
41.7881 168.7589 0.6942 -159.4808 -55.8531 -57.0812 51.9287

323.8085 -3.0948 126.3508 -92.6014 -179.7254 45.7161 30. 1199
13.7485 -230.9777 -6.5328 124.6472 6.2781 18.9491 -10.7131

Columns 15 through 21

2.6100 -2.0565 0.0689 0.3003 0.9235 -0.2244 1.2764
-2.0540 7.7074 0.8255 2.3642 0.2910 2.5540 -1.0319
0.0631 0.8334 4.5988 -0.9877 2.4842 1.3050 1.4064
0.3068 2.3489 -0.9968 8.3288 -0.6151 6.8957 0.6598

Columns 22 through 28

-1.8606 1.3283 -1.7513 0.9407 -1.3099 2.3204 -3.8801
6.0478 -0.0930 3.9044 -0.1169 3.0212 -0.0418 6.6334
1.0905 1.2959 0.5579 2.4848 1.6559 5.2348 2.6133
2.9706 0.1518 3.4567 0.0377 4.3167 0.5836 6.5274
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Gm| ii -

Columns 1 through 7

92.3936 164.8387 -58.1994 -199.3819 -57.3365 20.0614 -68.6918
196.5806 171.6741 -94.6911 -43.1889 -181.9405 -79.6736 212.1390
105.0576 141.6966 -45.9438 -166.4786 8.7368 -164.3084 74.2271
361.4868 183.6536 127.2080 -27.1159 225.2402 -36.0190 -144.7645

Columns 8 through 14

-26.4892 17.9443 5.2245 33.1036 -0.0822 -27.6275 8.3576
0.4522 272.0096 100.9069 -140.9888 -58.9851 -35.6951 10.2324

238.3149 25.3230 188.2920 -82.7019 -268.2625 41.4951 47.1680
22.7196 -239.5681 -9.4620 126.9080 88.0696 73.3432 -59.2934

Columns 15 through 21

2.8996 -2.0661 0.0321 0.4696 0.9380 -0.7617 1.2350
-2.0612 7.8104 1.01'40 2.1828 0.5056 3.0963 -0.8654
0.0378 1.0808 4.8366 -1.3009 2.9930 1.5393 0.8631
0.4781 2.1757 -1.3070 8.2418 -0.0999 6.5909 0.8618

Columns 22 through 28

-1.5725 1.2578 -1.5825 0.8400 -1.3211 1.6844 -3.8714
5.5949 -0.0739 3.4075 0.1453 2.8400 0.8144 6.8125
0.5598 0.9202 0.9424 2.3418 1.3532 4.3504 2.5067
3.5836 0.4657 3.0788 0.2729 3.7776 1.1053 6.8835
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F.2 Chapter lII Gains

This section contains the feedback matrices as computed by Eq (99) for the three

different solution techniques developed in Sections 3.2 and 3.2.1 for Example #3. The

matrices are on the following pages. Table 20 is the key to the solutions.

Table 20. Key to Matrix Names for Section F.2

Matrix Name Solution Technique
GI amin IIHIIF
Gt, min trace P
G 2  min [[PI12
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G! =

Columns I through 7

489.0862 28.6248 -71.3414 -1.5727 -72.1660 37.4579 37.6215
17.7314 515.4182 109.0362 -297.4294 31.6795 -146.2687 -20.8456

-44.9505 87.4180 504.7917 -50.9229 52.4029 -85.1045 -90.0218
105.2035 -271.3641 -18.1287 468.7974 -19.0522 97.2782 64.8550

Columns 8 through 14

-26.5444 7.8820 0.3209 -3.7119 0.8848 -2.5209 9.5871
130.7301 25.1807 21.3275 8.7155 -38.4993 33.8261 1.2374
59.3063 -56.4086 -14.8259 -10.3330 -0.5436 24.4887 1.9521

-120.3438 1.8507 -26.0600 24.9368 24.5943 32.8938 -12.1145

Columns 15 through 21

5.4058 -0.1816 -0.4012 0.2324 0.0592 0.2144 0.8973
-0.2802 8.3526 0.9596 -0.1919 0.1924 0.7148 -0.9564
-0.4365 0.9121 5.7926 -0.7942 1.2151 -0.3428 -0.0866
0.4123 -0.1276 -0.7620 7.8868 -0.7548 3.7372 0.5457

Columns 22 through 28

-0.7086 0.7830 -0.6640 0.3901 -0.5744 1.1016 -1.6770
3.7738 -0.3749 2.2375 -0.1275 1.6387 -0.3797 3.8566
0.4802 -0.1450 0.0443 0.8866 0.5386 1.9161 1.4046
0.8781 -0.1590 1.8312 -0.3545 2.3890 -0.4807 3.6853
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Gt, = 10 3 x

Columns I through 7

5.6539 0.6351 0.7863 -0.0965 -0.9973 -0.2201 -0.3016
0.4552 4.2154 -0.0477 -2.5036 0.0183 -0.7224 0.5553
0.3678 0.5871 6.7266 0.3822 -0.5905 -0.5118 -1.1454
1.4910 -1.8828 0.8736 3.7913 -0.0626 -0.2264 0.1935

Columns 8 through 14

0.1717 -0.2739 -0.3260 -0.7521 0.2527 0.2695 0.2142
0.2298 -0.0481 0.3316 0.1400 -0.3537 -0.1322 -0.0269
0.0057 -0.5344 0.2580 -0.3523 -0.4444 0.0257 -0.0366

-0.5208 -0.5672 -0.4576 -0.1986 0.3467 0.3019 0.0697

Columns 15 through 21

0.0861 0.0089 0.0119 -0.0025 0.0011 -0.0074 -0.0018
-0.0040 0.0758 0.0062 -0.0156 -0.0043 0.0052 0.0017
0.0031 0.0065 0.1020 0.0069 -0.0021 0.0018 0.0045
0.0135 -0.0135 0.0097 0.0765 -0.0042 0.0198 -0.0003

Columns 22 through 28

-0.0025 0.0018 -0.0101 -0.0018 -0.0040 0.0144 -0.0127
0.0223 0.0021 0.0156 0.0000 0.0081 -0.0037 0.0208
0.0004 0.0049 0.0027 0.0078 0.0037 0.0215 0.0113

0.0100 -0.0030 0.0093 -0.0014 0.0164 0.0056 0.0218
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G 2 = 103X

Columns 1 through 7

6.0104 0.2557 0.9050 0.3489 -1.5184 -0.7742 -0.0029
0.6289 4.1351 0.2488 -2.2366 -0.2825 -1.0163 0.4448
0.3753 0.6546 6.8706 0.5112 -0.9782 -0.7147 -0.9912
1.5668 -1.8007 0.8274 3.8946 -0.2072 -0.6900 0.2627

Columns 8 through 14

0.7349 -0.1738 -0.5530 -0.9896 0.3881 0.3245 0.2369
0.0403 0.1154 0.5935 -0.0895 -0.3598 -0.1564 -0.0388
0.1271 -0.5036 0.3764 -0.3193 -0.6004 -0.1108 -0.0595

-0.4776 -0,4433 -0.5820 -0.2490 0.7063 0.0476 0.0356

Columns 15 through 21

0.0910 0.0048 0.0129 0.0016 -0.0032 -0.0128 0.0009
-0.0041 0.0765 0.0063 -0.0137 -0.0048 0.0037 0.0004
0.0053 0.0065 0.1017 0.0063 -0.0029 0.0024 0.0079
0.0146 -0.0123 0.0054 0.0773 -0.0032 0.0175 0.0017

Columns 22 through 28

0.0024 0.0037 -0.0121 -0.0049 -0.0021 0.0174 -0.0127
0.0202 0.0018 0.0175 -0.0014 0.0069 -0.0051 0.0203
0.0046 0.0065 0.0036 0.0093 0.0039 0.0217 0.0108
0.0117 -0.0036 0.0059 -0.0025 0.0195 0.0024 0.0213
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F.3 Chapter IV Gains

This section contains the feedback matrices as computed by Eq (11) for the two

different solution techniques developed in Section 4.2 for both cases of the fourteen degree of

freedom example given in that chapter. The matrices are on the following pages. Table 21

is the key to the solutions.

Table 21. Key to Matrix Names for Section F.3
Example Matrix Name Solution Technique
G, = 7.3 Gt, min trace P

G 2  min IIPii 2
G, = 730 G.,, min trace P

G3 IIPI1
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Gtr

Columns 1 through 7

-11.7488 3.2884 13.4986 -0.5558 17.9921 -13.8203 -16.7188
-9.9056 -16.9476 29.3157 0.7307 9.9056 -19.5694 -14.2028

-16.6610 -34.5369 -12.3350 26.5726 7.9554 26.8844 15.1763
-3.4407 -13.1607 -32.9885 -16.3686 0.2130 47.2543 12.5992

Columns 8 through 14

14.0544 -15.3505 -16.4734 15.3605 18.9762 -2.2705 -3.5532
39.0706 -24.1762 -4.5332 8.6402 -4.2683 10.3557 -2.2846

-29.0592 -3.8376 15.8942 -18.6049 -11.5161 10.3083 -0.9486
-23.9520 23.5508 -1.9967 -7.1669 -4.2558 -2.3863 3.4267

Columns 15 through 21

-5.1343 0.1716 -0.3069 -0.0404 -0.1499 0.3782 -0.4648
0.1692 -6.0402 -0.2692 -0.7329 -0.2864 -0.8601 0.0000

-0.3071 -0.2697 -5.4743 -0.0852 -0.5116 -0.3406 -0.5974
-0.0422 -0.7302 -0.0836 -6.2146 0.0723 -1.2644 -0.6249

Columns 22 through 28

0.0626 -0.3449 0.4453 -0.2715 0.5341 -0.9002 1.1157
-1.2409 -0.1138 -1.0375 -0.4907 -1.4566 -0.5478 -1.8195
-0.5316 -0.7306 -0.2372 -0.9703 -0.1914 -1.9094 -0.7640
-1.0689 -0.4573 -1.5007 -0.0909 -1.0637 -0.9986 -1.9607
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G2

Columns 1 through 7

-11.7935 3.6822 13.4141 -1.1972 19.0378 -14.1205 -15.4661
-9.7794 -16.1182 29.9985 0.9010 10.5674 -20.1413 -15.9227

-16.9675 -35.4135 -12.7730 27.7664 8.3364 25.3197 18.2846
-2.4169 -12.0715 -34.9031 -16.2340 1.2857 45.2595 15.8351

Columns 8 through 14

15 2768 -18.1244 -16.9983 14.6906 18.8738 -0.9257 -3.6643
3M )842 -23.8281 -3.3703 9.6093 -2.9354 8.9960 -3.0381

-26.6124 -5.6469 14.0735 -20.2280 -11.1045 11.0074 -0.6140
-23.8285 21.6735 -1.5667 -9.0406 -3.0817 -2.3342 2.8039

Columns 15 through 21

-5.1650 0.1681 -0.3420 -0.0606 -0.0630 0.3829 -0.4401
0.1657 -5.9862 -0.2674 -0.6652 -0.2846 -0.9341 0.0109

-0.3425 -0.2679 -5.5387 -0.1240 -0.4237 -0.3109 -0.4992
-0.0624 -0.6623 -0.1222 -6.1774 0.1294 -1.3122 -0.5896

Columns 22 through 28

0.0732 -0.3376 0.4428 -0.3043 0.5322 -0.9075 1.1218
-1.3018 -0.1148 -1.0139 -0.4733 -1.3978 -0.5568 -1.8391
-0.5020 -0.7731 -0.2456 -0.9706 -0.2047 -1.9324 -0.7673
-1.1380 -0.4672 -1.4513 -0.1094 -1.0390 -0.9881 -1.9717
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Columns 1 through 7

-22.8709 22.8106 -6.5041 -28.3029 54.2380 0.8188 -20.0364
-16.5459 -20.1653 55.4339 6.3215 4.6520 -44.3262 -21.4800
-6.0725 -59.4756 -23.9072 54.6779 -5.3017 1.4459 69.3602
16.8109 -11.9735 -61.8080 -22.9949 4.4964 75.5195 28.6704

Columns 8 through 14

6.5656 -20.1957 -24.4718 21.3485 28.5355 -8.7677 -3.4032
62.5311 -31.8067 21.0302 3.1264 -31.6115 23.7250 -2.5897
-0.5412 -24.9753 48.2131 -56.3328 -52.2274 32.1660 0.1134

-41.2860 28.8172 -23.4676 -7.8490 14.2654 -8.1035 4.3680

Columns 15 through 21

-7.4396 0.5249 -0.8452 -0.7395 0.1190 0.9985 -0.4188
0.5212 -7.0872 -0.2929 -0.4252 -0.5485 -0.9977 -0.0066

-0.8442 -0.2941 -7.6642 -0.4416 0.2043 -0.4186 -0.4775
-0.7415 -0.4217 -0.4407 -7.5235 0.6443 -0.5406 -0.9764

Columns 22 through 28

-0.5363 -0.5846 0.7457 0.2731 0.3761 -0.9087 0.9068
-0.8074 -0.1145 -0.6507 -0.9885 -2.0818 -0.2452 -1.6534
-0.3056 -1.1602 -0.2901 -1.3372 -0.0700 -1.2076 -0.7120
-1.3012 -0.5369 -2.0333 0.3319 -0.6358 -1.3158 -1.9474
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Columns 1 through 7

-22.8709 22.8106 -6.5041 -28.3029 54.2380 0.8188 -20.0364

-16.5459 -20.1653 55.4339 6.3215 4.6520 -44.3262 -21.4800

-6.0725 -59.4756 -23.9072 54.6779 -5.3017 1.4459 69.3602

16.8109 -11.9735 -61.8080 -22.9949 4.4964 75.5195 28.6704

Columns 8 through 14

6.5656 -20.1957 -24.4718 21.3485 28.5355 -8.7677 -3.4032

62.5311 -31.8067 21.0302 3.1264 -31.6115 23.7250 -2.5897

-0.5412 -24.9753 48.2131 -56.3328 -52.2274 32.1660 0.1134

-41.2860 28.8172 -23.4676 -7.8490 14.2654 -8.1035 4.3680

Columns 15 through 21

-7.4396 0.5249 -0.8452 -0.7395 0.1190 0.9985 -0.4188

0.5212 -7.0872 -0.2929 -0.4252 -0.5485 -0.9977 -0.0066

-0.8442 -0.2941 -7.6642 -0.4416 0.2043 -0.4186 -0.4775

-0.7415 -0.4217 -0.4407 -7.5235 0.6443 -0.5406 -0.9764

Columns 22 through 28

-0.5363 -0.5846 0.7457 0.2731 0.3761 -0.9087 0.9068

-0.8074 -0.1145 -0.6507 -0.9885 -2.0818 -0.2452 -1.6534

-0.3056 -1.1602 -0.2901 -1.3372 -0.0700 -1.2076 -0.7120

-1.3012 -0.5369 -2.0333 0.3319 -0.6358 -1.3158 -1.9474
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